Understanding Photovoltage Enhancement in Metal–Insulator Semiconductor Photoelectrodes with Metal Nanoparticles

材料科学 半导体 表面光电压 金属 纳米技术 纳米颗粒 绝缘体(电) 光电子学 冶金 光谱学 物理 量子力学
作者
Alex J. King,Adam Z. Weber,Alexis T. Bell
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (28): 36380-36391 被引量:11
标识
DOI:10.1021/acsami.4c05928
摘要

A metal-insulator-semiconductor (MIS) structure holds great potential to promote photoelectrochemical (PEC) reactions, such as water splitting and CO2 reduction, for the storage of solar energy in chemical bonds. The semiconductor absorbs photons, creating electron-hole pairs; the insulator facilitates charge separation; and the metal collects the desired charge and facilitates its use in the electrochemical reaction. Despite these attractive features, MIS photoelectrodes are significantly limited by their photovoltage, a combination of the voltage generated from photon absorption minus the potential drop across the insulator. Herein, we use multiscale continuum modeling of the carrier, electrolyte, and interfacial transport to identify strategies for mitigating the deleterious potential drop across the insulator and enabling high MIS photovoltages. To this end, we model Ni/SiO2/n-Si photoanodes that employ a planar Ni film or Ni nanoparticles (np-MIS) and validate both models using experimental polarization curves and photovoltage measurements from the literature. The simulations reveal that the insulator potential drop is lower and hence achieves higher photovoltages for np-MIS structures than MIS structures because the electrolyte screens charge trapped at defect states between the semiconductor and the insulator. This electrolyte charge screening phenomenon can be further leveraged by using low loadings or small nanoparticles, which not only minimize the interfacial potential drop but also improve the photocurrent by enabling more light absorption. These insights contribute to the optimization of the np-MIS structures for sustainable energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阿米巴完成签到,获得积分20
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
smottom应助科研通管家采纳,获得10
刚刚
1秒前
华仔应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得30
1秒前
1秒前
smottom应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
dew应助弼马温采纳,获得20
1秒前
Akim应助科研通管家采纳,获得10
1秒前
君打豆发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
1秒前
轨迹应助科研通管家采纳,获得30
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
2秒前
wenzheng完成签到 ,获得积分10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
smottom应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
clientprogram应助科研通管家采纳,获得100
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300