Nondestructive Identification of Wheat Seed Variety and Geographical Origin Using Near‐Infrared Hyperspectral Imagery and Deep Learning

高光谱成像 鉴定(生物学) 遥感 人工智能 模式识别(心理学) 多样性(控制论) 计算机科学 地质学 植物 生物
作者
Apurva Sharma,Tarandeep Singh,Neerja Mittal Garg
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:38 (10) 被引量:3
标识
DOI:10.1002/cem.3585
摘要

ABSTRACT Seed purity assurance is an important aspect of maintaining the quality standards of wheat seeds. It relies significantly on quality parameters, like varietal classification and geographical origin identification. Hyperspectral imaging (HSI) has emerged as an advanced nondestructive technique to determine various quality parameters. In recent years, several studies have utilized HSI for varietal classification, although a limited number of varieties were considered. Additionally, no attention has been paid to determining the geographical origin of wheat seeds. To address these gaps, two separate experiments were performed for varietal classification and geographical origin identification. The seeds from 96 varieties grown across 5 different agricultural regions in India were collected. Hyperspectral images of wheat seeds were acquired in the wavelength ranging 900–1700 nm. The spectral reflectance values were obtained from the region of interest (ROI) corresponding to each seed. Subsequently, the deep learning models (convolutional neural networks [CNNs]) were established and compared with two conventional algorithms, including support vector machines (SVMs) and K‐nearest neighbors (KNNs). The experimental results indicated that the proposed CNN models outperformed the SVM and KNN models, achieving an overall accuracy of 94.88% and 99.02% for varietal classification and geographical origin identification, respectively. These results demonstrate that HSI combined with deep learning has the potential to accurately classify a large number of wheat varieties. Moreover, HSI can be used to precisely identify the geographical origins of wheat seeds. This study provides an accurate and nondestructive method that can assist in breeding, quality evaluation, and the development of high‐quality wheat seeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
感动友桃应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
jelly应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
胡三岁应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
changping应助科研通管家采纳,获得150
2秒前
大模型应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
Xiaoxiao应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
嘿嘿应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得30
3秒前
嘿嘿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
changping应助科研通管家采纳,获得10
3秒前
3秒前
changping应助尕翠采纳,获得10
4秒前
深情绿柳完成签到,获得积分10
5秒前
忧郁小刺猬完成签到,获得积分10
6秒前
6秒前
暗觉完成签到 ,获得积分10
8秒前
颜倾发布了新的文献求助10
10秒前
11秒前
changping应助握月担风采纳,获得10
11秒前
changping应助欣慰巨人采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360