Impact of network architecture and training strategy for photon counting CT data correction

计算机科学 培训(气象学) 建筑 网络体系结构 训练集 人工智能 计算机网络 物理 历史 考古 气象学
作者
Bahareh Morovati,Mengzhou Li,Shuo Han,Yongshun Xu,L. P. Zhou,Ge Wang,Hengyong Yu
标识
DOI:10.1117/12.3027262
摘要

In recent years, x-ray photon-counting detectors (PCDs) have become increasingly popular due to their ability to discriminate energy and low noise levels. However, technical issues (e.g., charge splitting and pulse pileup effects) can affect the data quality by distorting the energy spectrum. To address those issues, based on a deep neural network-based approach using a Wasserstein generative adversarial network (WGAN) framework for PCD data correction, we evaluate the effectiveness of pre-trained and training-from-scratch convolutional neural networks (CNNs) as perceptual loss functions to address charge splitting and pulse pileup correction challenges in photon counting computed tomography (CT) data. Different CNN architectures, including VGG11, VGG13, VGG16, VGG19, ResNet50, and Xception, are evaluated. Compared with the method using a pre-trained network, our findings indicate that training the CNNs from scratch on our dataset produces better results. It significantly affects the performance for the choice of CNN architecture as a perceptual loss in the WGAN framework. Furthermore, because recent explosive interest on transformers has suggested their potential to be useful for computer vision tasks, we also evaluate transformers to maximize the attribute-related information contained in the image feature by texture features extraction. Our study emphasizes the importance of selecting appropriate network architecture and training strategy when implementing the WGAN framework for photon counting CT data correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anderson732发布了新的文献求助10
刚刚
lbb发布了新的文献求助10
1秒前
梁三柏应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
hhhhhh应助科研通管家采纳,获得20
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
梁三柏应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
梁三柏应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
小白菜发布了新的文献求助10
2秒前
人间草木完成签到,获得积分10
2秒前
梁三柏应助科研通管家采纳,获得10
2秒前
隐形曼青应助suanquan采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
spf完成签到,获得积分10
2秒前
梁三柏应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
梁三柏应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
luxkex完成签到,获得积分10
3秒前
元66666完成签到 ,获得积分10
4秒前
着急的日记本应助阿辉采纳,获得10
4秒前
slow发布了新的文献求助10
4秒前
4秒前
懂冬冬完成签到,获得积分10
4秒前
茉行发布了新的文献求助30
4秒前
Mr_I完成签到,获得积分10
4秒前
橙汁发布了新的文献求助10
5秒前
Qionglin发布了新的文献求助10
5秒前
subohr完成签到,获得积分10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4022436
求助须知:如何正确求助?哪些是违规求助? 3562568
关于积分的说明 11339033
捐赠科研通 3294410
什么是DOI,文献DOI怎么找? 1814536
邀请新用户注册赠送积分活动 889303
科研通“疑难数据库(出版商)”最低求助积分说明 812889