已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3MT-Net: A Multi-modal Multi-task Model for Breast Cancer and Pathological Subtype Classification Based on a Multicenter Study

计算机科学 计算机辅助设计 模态(人机交互) 人工智能 深度学习 算法 乳腺超声检查 网(多面体) 二元分类 乳腺癌 机器学习 模式识别(心理学) 支持向量机 医学 癌症 乳腺摄影术 数学 工程类 工程制图 内科学 几何学
作者
Yaofei Duan,Patrick Cheong-Iao Pang,Ping He,Rongsheng Wang,Yue Sun,Chuntao Liu,Xiaorong Zhang,Xi-Rong Yuan,Pengjie Song,Chan‐Tong Lam,Ligang Cui,Tao Tan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3445952
摘要

Breast cancer significantly impacts women's health, with ultrasound being crucial for lesion assessment. To enhance diagnostic accuracy, computer-aided detection (CAD) systems have attracted considerable interest. This study introduces a prospective deep learning architecture called "Multi-modal Multi-task Network" (3MT-Net). 3MT-Net utilizes a combination of clinical data, B-mode, and color Doppler ultrasound. We have designed the AM-CapsNet network, specifically tailored to extract crucial tumor features from ultrasound. To combine clinical data in 3MT-Net, we have employed a cascaded cross-attention to fuse information from three distinct sources. To ensure the preservation of pertinent information during the fusion of high-dimensional and low-dimensional data, we adopt the idea of ensemble learning and design an optimization algorithm to assign weights to different modalities. Eventually, 3MT-Net performs binary classification of benign and malignant lesions as well as pathological subtype classification. In addition, we retrospectively collected data from nine medical centers. To ensure the broad applicability of the 3MT-Net, we created two separate testsets and conducted extensive experiments. Furthermore, a comparative analysis was conducted between 3MT-Net and the industrial-grade CAD product S-detect. The AUC of 3MT-Net surpasses S-Detect by 1.4% to 3.8%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaooooo完成签到,获得积分20
2秒前
3秒前
李健应助smart丁丁采纳,获得10
4秒前
4秒前
曹牧之完成签到 ,获得积分10
6秒前
7秒前
roselau完成签到,获得积分10
12秒前
科目三应助夏天的西瓜采纳,获得10
12秒前
14秒前
小娄娄娄发布了新的文献求助10
20秒前
田様应助Lee采纳,获得10
21秒前
Lucas应助Rjy采纳,获得10
22秒前
丘比特应助sniper111采纳,获得10
22秒前
无奈皮卡丘完成签到 ,获得积分10
24秒前
25秒前
科研通AI5应助dildil采纳,获得10
27秒前
30秒前
温暖凡灵完成签到,获得积分10
31秒前
32秒前
chengmin发布了新的文献求助10
33秒前
VAE发布了新的文献求助30
34秒前
zhao完成签到 ,获得积分10
36秒前
sun完成签到 ,获得积分10
37秒前
43秒前
李爱国应助无语采纳,获得10
46秒前
yang应助傲娇初阳采纳,获得10
46秒前
zeyin完成签到,获得积分10
46秒前
48秒前
顾矜应助chengmin采纳,获得10
49秒前
小黎快看完成签到 ,获得积分10
49秒前
52秒前
Lucas应助论文写到头秃采纳,获得10
54秒前
54秒前
草木发布了新的文献求助10
56秒前
58秒前
58秒前
JianminLuo发布了新的文献求助10
59秒前
隐形曼青应助烟尘采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782508
求助须知:如何正确求助?哪些是违规求助? 3327943
关于积分的说明 10233888
捐赠科研通 3042909
什么是DOI,文献DOI怎么找? 1670329
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758915