代表(政治)
性别偏见
解耦(概率)
计算机科学
心理学
任务(项目管理)
社会心理学
政治学
经济
工程类
管理
法学
控制工程
政治
作者
Andi Peng,Besmira Nushi,Emre Kıcıman,Kori Inkpen,Siddharth Suri,Ece Kamar
出处
期刊:Cornell University - arXiv
日期:2019-01-01
被引量:9
标识
DOI:10.48550/arxiv.1909.03567
摘要
Although systematic biases in decision-making are widely documented, the ways in which they emerge from different sources is less understood. We present a controlled experimental platform to study gender bias in hiring by decoupling the effect of world distribution (the gender breakdown of candidates in a specific profession) from bias in human decision-making. We explore the effectiveness of \textit{representation criteria}, fixed proportional display of candidates, as an intervention strategy for mitigation of gender bias by conducting experiments measuring human decision-makers' rankings for who they would recommend as potential hires. Experiments across professions with varying gender proportions show that balancing gender representation in candidate slates can correct biases for some professions where the world distribution is skewed, although doing so has no impact on other professions where human persistent preferences are at play. We show that the gender of the decision-maker, complexity of the decision-making task and over- and under-representation of genders in the candidate slate can all impact the final decision. By decoupling sources of bias, we can better isolate strategies for bias mitigation in human-in-the-loop systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI