Mapping Seasonal Leaf Nutrients of Mangrove with Sentinel-2 Images and XGBoost Method

红树林 营养物 环境科学 天蓬 叶面积指数 遥感 农学 生物 植物 地理 生态学
作者
Jing Miao,Jianing Zhen,Junjie Wang,Demei Zhao,Xiapeng Jiang,Zhen Shen,Changjun Gao,Guofeng Wu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:14 (15): 3679-3679 被引量:19
标识
DOI:10.3390/rs14153679
摘要

Monitoring the seasonal leaf nutrients of mangrove forests helps one to understand the dynamics of carbon (C) sequestration and to diagnose the availability and limitation of nitrogen (N) and phosphorus (P). To date, very little attention has been paid to mapping the seasonal leaf C, N, and P of mangrove forests with remote sensing techniques. Based on Sentinel-2 images taken in spring, summer, and winter, this study aimed to compare three machine learning models (XGBoost, extreme gradient boosting; RF, random forest; LightGBM, light gradient boosting machine) in estimating the three leaf nutrients and further to apply the best-performing model to map the leaf nutrients of 15 seasons from 2017 to 2021. The results showed that there were significant differences in leaf nutrients (p < 0.05) across the three seasons. Among the three machine learning models, XGBoost with sensitive spectral features of Sentinel-2 images was optimal for estimating the leaf C (R2 = 0.655, 0.799, and 0.829 in spring, summer, and winter, respectively), N (R2 = 0.668, 0.743, and 0.704) and P (R2 = 0.539, 0.622, and 0.596) over the three seasons. Moreover, the red-edge (especially B6) and near-infrared bands (B8 and B8a) of Sentinel-2 images were efficient estimators of mangrove leaf nutrients. The information of species, elevation, and canopy structure (leaf area index [LAI] and canopy height) would be incorporated into the present model to improve the model accuracy and transferability in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴乔完成签到,获得积分10
1秒前
内向莛发布了新的文献求助10
1秒前
今后应助海岢采纳,获得10
2秒前
搜集达人应助Fernweh采纳,获得10
5秒前
w婷完成签到 ,获得积分10
6秒前
7秒前
叶子宁完成签到,获得积分10
11秒前
Cmy发布了新的文献求助10
11秒前
Owen应助皮皮鲁采纳,获得10
11秒前
12秒前
12秒前
13秒前
KIE发布了新的文献求助10
18秒前
19秒前
木木三发布了新的文献求助10
19秒前
yuewanwan发布了新的文献求助10
24秒前
赘婿应助咖啡先生采纳,获得10
25秒前
26秒前
guaxi完成签到,获得积分10
28秒前
29秒前
骆驼林子完成签到,获得积分10
29秒前
zizi发布了新的文献求助10
32秒前
ayer完成签到,获得积分20
33秒前
icecream发布了新的文献求助10
33秒前
烟花应助骆驼林子采纳,获得10
33秒前
qiulong发布了新的文献求助10
34秒前
李健应助余木木采纳,获得10
35秒前
yuewanwan完成签到,获得积分10
36秒前
39秒前
39秒前
40秒前
霸气鞯完成签到,获得积分10
42秒前
42秒前
雪雪子哇发布了新的文献求助10
42秒前
zjz发布了新的文献求助10
44秒前
彭于晏应助科研通管家采纳,获得30
44秒前
领导范儿应助科研通管家采纳,获得10
44秒前
Ava应助科研通管家采纳,获得30
44秒前
李健的粉丝团团长应助lmq采纳,获得10
44秒前
今后应助科研通管家采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976