Construction of tennis pose estimation and action recognition model based on improved ST-GCN

计算机科学 人工智能 卷积神经网络 姿势 联营 残余物 模式识别(心理学) 稳健性(进化) 计算机视觉 图形 算法 生物化学 化学 理论计算机科学 基因
作者
Yu Ping Yang
出处
期刊:Molecular & cellular biomechanics 卷期号:21 (4): 605-605
标识
DOI:10.62617/mcb605
摘要

With the rapid growth of computer vision and deep learning technologies, the application of pose estimation and action recognition in sports training has become increasingly widespread. Due to factors such as complex movements, fast speed, and limb occlusion, pose estimation and action recognition in tennis face significant challenges. Therefore, this study first introduces selective dropout and pyramid region of interest pooling layer strategies in fast region convolutional neural networks. Secondly, a pose estimation algorithm based on multi-scale fusion pose residual network 50 is designed, and finally a spatiotemporal graph convolutional network model is constructed by fusing channel attention module and multi-scale dilated convolution module. The data showed that the average detection accuracy of the improved attitude residual network 50 was 70.4%, and the accuracy of object detection for small, medium, and large objects was 57.4%, 69.3%, and 79.2%, respectively. The continuous action recognition accuracy and inter action fluency detection time of the improved spatiotemporal graph convolutional network were 93.8% and 19.2 ms, respectively. When the sample size was 1000, its memory usage was 1378 MB and the running time was 32.7 ms. Experiments have shown that the improved model achieves high accuracy and robustness in tennis action recognition tasks, especially in complex scenes and limb occlusion conditions, where the model shows significant advantages. This study aims to provide an efficient and accurate motion recognition technology for tennis posture analysis and intelligent training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
补丁发布了新的文献求助10
1秒前
帅宝发布了新的文献求助10
1秒前
3秒前
在水一方应助X2q采纳,获得10
4秒前
田様应助李有钱采纳,获得10
4秒前
5秒前
youchgg完成签到,获得积分10
5秒前
顾矜应助哈理老萝卜采纳,获得10
5秒前
爬不起来发布了新的文献求助10
6秒前
6秒前
6秒前
SciGPT应助Chuwei采纳,获得10
6秒前
高兴的海豚完成签到,获得积分10
7秒前
8秒前
zhuo完成签到,获得积分10
8秒前
罗浩发布了新的文献求助10
9秒前
优秀绮彤完成签到,获得积分10
9秒前
YABC完成签到,获得积分20
10秒前
10秒前
科研通AI5应助一一采纳,获得10
11秒前
12秒前
LULU完成签到,获得积分10
12秒前
Ning发布了新的文献求助10
12秒前
可乐发布了新的文献求助10
12秒前
冰魂应助莱贝特采纳,获得10
12秒前
冷酷的戎完成签到 ,获得积分10
13秒前
14秒前
田様应助哭泣时光采纳,获得10
15秒前
YABC发布了新的文献求助10
15秒前
失眠语海完成签到 ,获得积分10
16秒前
16秒前
ws123发布了新的文献求助10
17秒前
composite66完成签到,获得积分10
17秒前
林夏完成签到,获得积分10
17秒前
科研通AI5应助勤奋酒窝采纳,获得30
17秒前
晶晶发布了新的文献求助10
21秒前
一一发布了新的文献求助10
22秒前
科研通AI5应助yuminger采纳,获得10
22秒前
顾矜应助阿怪采纳,获得10
22秒前
23秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799882
求助须知:如何正确求助?哪些是违规求助? 3345154
关于积分的说明 10324069
捐赠科研通 3061756
什么是DOI,文献DOI怎么找? 1680519
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462