An adaptive continuous threshold wavelet denoising method for LiDAR echo signal

Echo(通信协议) 小波 降噪 信号(编程语言) 激光雷达 声学 计算机科学 环境科学 遥感 人工智能 物理 地质学 计算机网络 程序设计语言
作者
Dezhi Zheng,T. L. Qu,Chun Hu,Shijia Lu,Zhongxiang Li,Guanyu Yang,Xiao‐Jun Yang
出处
期刊:Nanotechnology and Precision Engineering [AIP Publishing]
卷期号:8 (2)
标识
DOI:10.1063/10.0034398
摘要

Atmospheric aerosols are the primary contributors to environmental pollution. As such aerosols are micro-to nanosized particles invisible to the naked eye, it is necessary to utilize LiDAR technology for their detection. The laser radar echo signal is vulnerable to background light and electronic thermal noise. While single-photon LiDAR can effectively reduce background light interference, electronic thermal noise remains a significant challenge, especially at long distances and in environments with a low signal-to-noise ratio (SNR). However, conventional denoising methods cannot achieve satisfactory results in this case. In this paper, a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise. The algorithm features an adaptive threshold and a continuous threshold function. The adaptive threshold is dynamically adjusted according to the wavelet decomposition level, and the continuous threshold function ensures continuity with lower constant error, thus optimizing the denoising process. Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error (RMSE) compared with other algorithms. Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5% reduction in RMSE. The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘症发布了新的文献求助10
2秒前
科研通AI2S应助苦命吗喽采纳,获得10
2秒前
SYLH应助阔达的梦露采纳,获得10
2秒前
抹宁发布了新的文献求助10
3秒前
3秒前
4秒前
苏獭应助123采纳,获得10
5秒前
团结友爱完成签到,获得积分10
6秒前
@∞完成签到 ,获得积分10
7秒前
FOLY发布了新的文献求助10
8秒前
11秒前
11秒前
苦命吗喽完成签到,获得积分10
12秒前
12秒前
14秒前
小小笑笑完成签到 ,获得积分10
16秒前
atcha发布了新的文献求助10
17秒前
17秒前
lgb发布了新的文献求助10
17秒前
冯从露发布了新的文献求助10
17秒前
NI发布了新的文献求助10
18秒前
林淼完成签到 ,获得积分10
19秒前
21秒前
qq完成签到,获得积分10
21秒前
22秒前
23秒前
嘟嘟完成签到,获得积分10
24秒前
刘liu完成签到,获得积分20
24秒前
科研小垃圾完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
28秒前
研友_VZG7GZ应助外向的聪健采纳,获得10
30秒前
情怀应助zhou采纳,获得10
30秒前
30秒前
NexusExplorer应助Sirius_Black采纳,获得20
31秒前
SCI完成签到,获得积分10
31秒前
32秒前
Jack发布了新的文献求助10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965173
求助须知:如何正确求助?哪些是违规求助? 3510528
关于积分的说明 11153563
捐赠科研通 3244811
什么是DOI,文献DOI怎么找? 1792609
邀请新用户注册赠送积分活动 873928
科研通“疑难数据库(出版商)”最低求助积分说明 804081