材料科学
陶瓷
储能
工程物理
复合材料
能量(信号处理)
纳米技术
热力学
功率(物理)
统计
物理
数学
工程类
作者
Ting Tang,J. Liu,Dong Liu,Yi Han,Rongsheng Luan,Qi Wang,Hui Liu,Bo‐Ping Zhang,Qiang Zheng,Shiqing Deng,Yimei Zhu,Lijun Wu,Juping Xu,Wen Yin,Xiaoming Shi,Lifeng Zhu
标识
DOI:10.1002/adfm.202425711
摘要
Abstract Dielectric capacitors are strikingly attractive for use in advanced high‐power pulsed‐discharge devices for electronic systems. However, their poor energy‐storage density ( U rec ) and efficiency ( η ) resulting from the large remanent polarization ( P r ) and low breakdown strength (BDS), have been the major challenge for practical applications. Inspired by the glass ceramics in which the core‐shell microstructure is considered an effective method to improve the BDS, maintain large P max , and reduce P r values, the strategy of “self‐generated glass‐ceramics‐like structure” is proposed in this work, and the (Eu x Ag 1−3 x )NbO 3 (Eu x AN) at 0.00 ≤ x ≤ 0.09 capacitors are designed. Similar to glass ceramics, the ceramics‐like AFE regions in the “self‐generated glass‐ceramics‐like structure” help to improve P max value, while glass‐like PE regions are responsible for increasing the BDS of the capacitor, so as to achieve ultrahigh U rec and η values. Because of the glass‐ceramics‐like structure, high recoverable energy storage U rec ≈ 16.6 J cm −3 along with an excellent η ≈ 93.1% are achieved in the Eu x AN ( x = 0.07) multilayer capacitors. This work offers a good paradigm for improving the energy storage properties of AFE systems to meet the demanding requirements of advanced energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI