已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SegAnyPath: A Foundation Model for Multi-resolution Stain-variant and Multi-task Pathology Image Segmentation

人工智能 图像分割 分割 计算机科学 分辨率(逻辑) 计算机视觉 基础(证据) 数字化病理学 污渍 任务(项目管理) 模式识别(心理学) 病理 医学 染色 工程类 考古 系统工程 历史
作者
Chong Wang,Yajie Wan,Shuxin Li,Kaili Qu,Xuezhi Zhou,Junjun He,Jing Ke,Yi Yu,Tianyun Wang,Yiqing Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3501352
摘要

Foundation models like the Segment Anything Model (SAM) have shown promising performance in general image segmentation tasks. However, their effectiveness is limited when applied to pathology images due to the inherent multi-scale structural complexity and staining heterogeneity. To address these challenges, we introduce SegAnyPath, a foundational model specifically designed for pathology image segmentation. SegAnyPath is trained on an extensive public pathology dataset comprising over 1.5 million images and 3.5 million masks. We propose a multi-scale proxy task to handle the diverse resolutions in pathology images, complementing the reconstruction objective in the supervised learning stage. To enhance segmentation performance across stain variations, we introduce a novel self-distillation scheme based on stain augmentations. Furthermore, we propose an innovative task-guided Mixture of Experts (MoE) architecture in the decoder of SegAnyPath for efficient management of distinct pathology segmentation tasks, including cell, tissue, and tumor segmentation. Experimental results demonstrate SegAnyPath's zero-shot generalization capability, achieving a Dice score of 0.6797 across multiple datasets and organs while maintaining consistent performance across varying staining styles and resolutions. In comparison, the fine-tuned SAM achieves a Dice score of only 0.5258 on the same external test sets, indicating a substantial 29.27% improvement by SegAnyPath. SegAnyPath has the potential to advance the field of pathology analysis and improve diagnostic accuracy in clinical settings. The code is available at https://github.com/wagnchogn/SegAnyPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhantianao完成签到,获得积分10
1秒前
3秒前
6秒前
7秒前
caojiarong发布了新的文献求助10
7秒前
lxy发布了新的文献求助10
8秒前
付程完成签到,获得积分20
10秒前
852应助李花开又白采纳,获得10
13秒前
怕黑傲珊完成签到,获得积分10
13秒前
肸子发布了新的文献求助10
16秒前
坦率的匪应助读书的时候采纳,获得30
18秒前
深情安青应助chencheng采纳,获得10
19秒前
科研通AI2S应助齐齐巴宾采纳,获得10
20秒前
英姑应助天真的idiot采纳,获得10
21秒前
小洋甘完成签到,获得积分10
24秒前
缓慢胡萝卜完成签到,获得积分10
27秒前
28秒前
lalalaheihei发布了新的文献求助10
28秒前
29秒前
上官若男应助李花开又白采纳,获得10
29秒前
30秒前
田様应助caojiarong采纳,获得10
30秒前
meww发布了新的文献求助10
34秒前
36秒前
林lin发布了新的文献求助10
36秒前
wanci应助yihao采纳,获得10
37秒前
qiubinxu发布了新的文献求助10
39秒前
小白应助meww采纳,获得10
39秒前
chencheng发布了新的文献求助10
41秒前
41秒前
斯文败类应助医者仁心采纳,获得10
42秒前
JamesPei应助李花开又白采纳,获得10
42秒前
48秒前
维尼完成签到,获得积分10
49秒前
50秒前
51秒前
某H发布了新的文献求助10
52秒前
褐板完成签到,获得积分10
52秒前
维尼发布了新的文献求助10
53秒前
田様应助清爽的水蓝采纳,获得10
54秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060385
求助须知:如何正确求助?哪些是违规求助? 3598779
关于积分的说明 11431611
捐赠科研通 3323243
什么是DOI,文献DOI怎么找? 1827176
邀请新用户注册赠送积分活动 897842
科研通“疑难数据库(出版商)”最低求助积分说明 818656