Coupling of state space modules and attention mechanisms: An input‐aware multi‐contrast MRI synthesis method

对比度(视觉) 计算机科学 图像质量 集合(抽象数据类型) 相似性(几何) 医学影像学 试验装置 人工智能 k-空间 模式识别(心理学) 数据挖掘 磁共振成像 图像(数学) 医学 放射科 程序设计语言
作者
Shuai Chen,Ruoyu Zhang,Huazheng Liang,Yunzhu Qian,Xuefeng Zhou
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17598
摘要

Abstract Background Medical imaging plays a pivotal role in the real‐time monitoring of patients during the diagnostic and therapeutic processes. However, in clinical scenarios, the acquisition of multi‐modal imaging protocols is often impeded by a number of factors, including time and economic costs, the cooperation willingness of patients, imaging quality, and even safety concerns. Purpose We proposed a learning‐based medical image synthesis method to simplify the acquisition of multi‐contrast MRI. Methods We redesigned the basic structure of the Mamba block and explored different integration patterns between Mamba layers and Transformer layers to make it more suitable for medical image synthesis tasks. Experiments were conducted on the IXI (a total of 575 samples, training set: 450 samples; validation set: 25 samples; test set: 100 samples) and BRATS (a total of 494 samples, training set: 350 samples; validation set: 44 samples; test set: 100 samples) datasets to assess the synthesis performance of our proposed method in comparison to some state‐of‐the‐art models on the task of multi‐contrast MRI synthesis. Results Our proposed model outperformed other state‐of‐the‐art models in some multi‐contrast MRI synthesis tasks. In the synthesis task from T1 to PD, our proposed method achieved the peak signal‐to‐noise ratio (PSNR) of 33.70 dB (95% CI, 33.61, 33.79) and the structural similarity index (SSIM) of 0.966 (95% CI, 0.964, 0.968). In the synthesis task from T2 to PD, the model achieved a PSNR of 33.90 dB (95% CI, 33.82, 33.98) and SSMI of 0.971 (95% CI, 0.969, 0.973). In the synthesis task from FLAIR to T2, the model achieved PSNR of 30.43 dB (95% CI, 30.29, 30.57) and SSIM of 0.938 (95% CI, 0.935, 0.941). Conclusions Our proposed method could effectively model not only the high‐dimensional, nonlinear mapping relationships between the magnetic signals of the hydrogen nucleus in tissues and the proton density signals in tissues, but also of the recovery process of suppressed liquid signals in FLAIR. The model proposed in our work employed distinct mechanisms in the synthesis of images belonging to normal and lesion samples, which demonstrated that our model had a profound comprehension of the input data. We also proved that in a hierarchical network, only the deeper self‐attention layers were responsible for directing more attention on lesion areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Vesper采纳,获得10
2秒前
不倦应助认真谷雪采纳,获得10
2秒前
3秒前
桐桐应助辛勤的乐曲采纳,获得10
4秒前
超帅的薯片完成签到,获得积分10
4秒前
4秒前
5秒前
流川枫完成签到,获得积分10
6秒前
6秒前
BIO发布了新的文献求助10
6秒前
Purplesky完成签到,获得积分10
7秒前
9秒前
彭于晏应助dsdjsicj采纳,获得10
11秒前
Diamond发布了新的文献求助30
11秒前
月亮发布了新的文献求助10
12秒前
jenningseastera应助鲸鱼阿扑采纳,获得10
13秒前
小高同学发布了新的文献求助10
13秒前
糜轩完成签到,获得积分10
15秒前
牛马完成签到,获得积分10
17秒前
tony完成签到,获得积分10
17秒前
QQQQ完成签到 ,获得积分10
18秒前
露卡完成签到,获得积分10
21秒前
22秒前
23秒前
刘刘完成签到,获得积分10
23秒前
cai完成签到,获得积分10
25秒前
科研通AI5应助黄可以采纳,获得10
27秒前
煜cy发布了新的文献求助10
28秒前
香蕉觅云应助cs采纳,获得10
28秒前
zommen完成签到 ,获得积分20
31秒前
SciGPT应助皮皮采纳,获得10
32秒前
ZYH完成签到 ,获得积分10
33秒前
简单喀秋莎完成签到,获得积分10
33秒前
冯飞来凯完成签到,获得积分10
34秒前
浮华完成签到,获得积分10
35秒前
35秒前
吃点水果保护局完成签到 ,获得积分10
36秒前
sunyafei完成签到,获得积分10
36秒前
zommen关注了科研通微信公众号
37秒前
紫禁城的雪花完成签到,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339