Landslide Susceptibility Mapping in Complex Topo‐Climatic Himalayan Terrain, India Using Machine Learning Models: A Comparative Study of XGBoost, RF and ANN

地形 山崩 地质学 遥感 地图学 地貌学 地理
作者
Shubham Badola,Manish Pandey,Varun Narayan Mishra,Surya Parkash,Mohamed Zhran
出处
期刊:Geological Journal [Wiley]
标识
DOI:10.1002/gj.5175
摘要

ABSTRACT Landslides present a significant danger to both infrastructure and human lives in the challenging terrain of the Himalayas. Therefore, it is crucial to accurately map areas prone to landslides to facilitate informed decision‐making and proactive planning, allowing for effective management of this hazard. Since the landslide occurrences are accentuated by floods through toe erosion, and wildfires through this research aims to integrate machine learning techniques with the analysis of multiple hazards, such as floods and forest fires, as novel conditioning factors to create a comprehensive map of landslide susceptibility. Geospatial analysis was conducted to examine the relationship between 19 conditioning elements, including factors related to flood and forest fire susceptibility, which contribute to the occurrence of landslides. This study tested the efficacy of three machine learning models for mapping landslide‐prone areas: eXtreme Gradient Boost (XGBoost), Random Forest (RF) and Artificial Neural Network (ANN). These models can identify complex correlations and patterns among conditioning elements, resulting in more accurate mapping of regions prone to landslides. A regression analysis was performed to evaluate multicollinearity and confirm the association between the dependent and independent variables. The analysis revealed a variance inflation factor within acceptable bounds, providing validation for the correlation. The ROC–AUC curve approach was used to assess the models' accuracy. Among the models tested, XGB exhibited the highest accuracy at 94%, followed by RF at 92% and ANN at 77%. The results of this study offer insightful information about how to combine data from various hazard occurrences to forecast landslide susceptibility. This work can be instrumental for local authorities and disaster management organisations in prioritising resources, implementing mitigation plans and enhancing resilience against landslide threats.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
冰魂应助奉宣室以何年采纳,获得10
7秒前
yangjinru完成签到 ,获得积分10
7秒前
9秒前
席田兰发布了新的文献求助10
10秒前
10秒前
解师完成签到,获得积分20
11秒前
laochen发布了新的文献求助10
11秒前
健壮问兰完成签到 ,获得积分10
12秒前
12秒前
stitch发布了新的文献求助10
13秒前
笑嘻嘻完成签到,获得积分10
14秒前
15秒前
研友_CCQ_M完成签到,获得积分10
16秒前
比大家发布了新的文献求助10
18秒前
卡卡完成签到,获得积分10
21秒前
科研通AI5应助加菲丰丰采纳,获得10
22秒前
大力的百合完成签到,获得积分10
23秒前
共享精神应助席田兰采纳,获得10
27秒前
xulin完成签到 ,获得积分10
28秒前
dochx完成签到,获得积分10
29秒前
NexusExplorer应助书记采纳,获得10
33秒前
34秒前
35秒前
充电宝应助医学小王采纳,获得10
38秒前
LZY发布了新的文献求助10
38秒前
活力寄凡发布了新的文献求助10
40秒前
万能图书馆应助宁静致远采纳,获得10
43秒前
LZY完成签到,获得积分10
43秒前
慈祥的晓蓝完成签到 ,获得积分10
45秒前
46秒前
46秒前
48秒前
kchrisuzad完成签到,获得积分10
49秒前
轻松的吐司应助活力寄凡采纳,获得10
50秒前
壹拾柒完成签到,获得积分10
51秒前
51秒前
52秒前
米香发布了新的文献求助80
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878