Predicting Recurrence Following Surgical Resection for High-risk Localized Renal Cell Carcinoma: A Radiomics-Clinical Integration Approach

医学 无线电技术 肾细胞癌 切除术 外科切除术 外科 放射科 肿瘤科
作者
Z. Khene,Raj Bhanvadia,Isamu Tachibana,Prajwal Sharma,William Graber,Théophile Bertail,Raphael Fleury,R. de Crevoisier,Karim Bensalah,Yair Lotan,Vitaly Margulis
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
标识
DOI:10.1097/ju.0000000000004588
摘要

Adjuvant immunotherapy for clear cell renal cell carcinoma (ccRCC) is controversial due to the absence of reliable biomarkers for identifying patients most likely to benefit. This study aimed to develop and validate a quantitative radiomic signature (RS) and a radiomics-clinical model to identify patients at increased risk of recurrence following surgery among those eligible for adjuvant immunotherapy. This retrospective study included patients with ccRCC who are at intermediate-to-high or high risk of recurrence after nephrectomy. Inclusion criteria were patients with baseline characteristics matching the KEYNOTE-564 criteria. Radiomic texture-features were extracted from preoperative CT scans. Affinity-propagation clustering and random survival forest algorithms were applied to construct the RS. A radiomics-clinical-model was developed using multivariable Cox regression. The primary endpoint was disease-free survival (DFS). Model performance was assessed using time-dependent and integrated AUCs (iAUCs) and compared to conventional prognostic models via decision curve analysis (DCA). A total of 309 patients were included, split into training (247) and test (62) sets. From each patient, 1,316 radiomic features were extracted. The RS achieved an iAUC of 0.78 in the training set and 0.72 in the test set. Multivariable analysis identified node status, vascular invasion, hemoglobin, and the RS as predictors of DFS (all p<0.05). These factors formed the radiomics-clinical-model, which achieved an iAUC of 0.81(95%CI,0.76-0.85) in the training set and 0.78(95%CI,0.69-0.88) in the test set. DCA demonstrated its superior clinical utility compared to conventional prognostic models. Integrating radiomics with clinical factors improves DFS prediction in intermediate-to-high or high risk ccRCC. This model offers a tool for individualized risk assessment, potentially optimizing patient selection for adjuvant therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
csy完成签到,获得积分10
2秒前
guxue发布了新的文献求助10
3秒前
盛夏完成签到,获得积分10
5秒前
默默完成签到 ,获得积分20
5秒前
Atom完成签到,获得积分10
5秒前
6秒前
现代的南风完成签到 ,获得积分10
8秒前
天天向上发布了新的文献求助10
10秒前
10秒前
汉堡包应助一恒采纳,获得10
10秒前
11秒前
12秒前
12秒前
YQQ发布了新的文献求助10
14秒前
樊书南发布了新的文献求助10
14秒前
Qiao完成签到,获得积分10
15秒前
可爱的函函应助ss采纳,获得10
15秒前
初余发布了新的文献求助10
15秒前
自然白安完成签到 ,获得积分10
17秒前
归尘发布了新的文献求助10
18秒前
18秒前
天气一级棒完成签到,获得积分10
20秒前
施储完成签到,获得积分10
21秒前
shencheng发布了新的文献求助10
21秒前
神秘玩家完成签到 ,获得积分10
23秒前
可爱的函函应助jasonwee采纳,获得10
23秒前
一恒发布了新的文献求助10
24秒前
guxue完成签到,获得积分10
25秒前
汉堡包应助心碎的黄焖鸡采纳,获得10
26秒前
李乐完成签到 ,获得积分10
28秒前
薄荷撞可乐关注了科研通微信公众号
28秒前
田様应助12采纳,获得10
29秒前
CodeCraft应助xiaochai采纳,获得10
31秒前
大模型应助朴素的大树采纳,获得10
32秒前
33秒前
YQQ发布了新的文献求助10
35秒前
科研通AI5应助晨曦采纳,获得10
35秒前
35秒前
手可摘柠檬给手可摘柠檬的求助进行了留言
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757