膜
化学工程
蒙脱石
反向电渗析
材料科学
不对称
盐度
化学物理
化学
复合材料
地质学
电渗析
生物化学
量子力学
海洋学
物理
工程类
作者
Jingwen Liu,Jiwen Si,Yian Li,Zihan Chen,Shiying Hu,Weikun Ning,Wenqing Li,Wei Zhang,Shiding Miao
出处
期刊:Small
[Wiley]
日期:2025-04-18
卷期号:21 (23): e2502871-e2502871
被引量:3
标识
DOI:10.1002/smll.202502871
摘要
Abstract To mitigate the concentration polarization caused by non‐ohmic resistance, asymmetric ion exchange membranes (IEMs) with nanochannels of comparable Debye length are frequently employed in salinity gradient energy conversion. Conventional asymmetric IEMs always rely on exogenous interventions to tailor their asymmetries as employing polyelectrolytes or modifying substrate porous membranes. Herein, the endogenous asymmetry of the natural smectite family is leveraged to develop composite membranes comprising structurally asymmetric montmorillonite and saponite sheets (MMT‐SAP). The fabricated MMT‐SAP membrane demonstrates superior ion selectivity and outstanding stability, making it an exceptional salinity gradient energy generation device. Mounted on artificial seawater and river water at 50‐fold salinity gradient, the MMT‐SAP demonstrates a cation selectivity of 0.96 and a high‐power generation output 4.5 W m −2 . The maximum power output is found to reach 8.46 W m − 2 at the pH = 11.0. The theoretical study of MMT‐SAP reveals that a potential ion migration mechanism within layered mineral channels is determined by two crucial factors: channel size and the heterogeneous structure distribution in the smectite‐based membrane.
科研通智能强力驱动
Strongly Powered by AbleSci AI