Highly Efficient Charge Transfer between Water and Two-Dimensional Materials with Polar Bonds

化学 极地的 电荷(物理) 化学物理 传输(计算) 计算化学 物理 量子力学 天文 并行计算 计算机科学
作者
Yuwei Cao,Chenchen Zhou,Wanqi Zhou,Chun Shen,Bao Jin,Tianbao Ma,Hu Qiu,Wanlin Guo
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c00480
摘要

Charge transfer at solid-liquid interfaces is pivotal in biochemical processes, catalysis, and electrochemical devices. However, understanding the charge transfer mechanism at the nanoscale solid-liquid interface remains highly challenging. Here, we conduct ab initio molecular dynamics simulations to investigate interfacial charge transfer between water and the two most common two-dimensional materials: graphene with nonpolar C-C bonds and hexagonal boron nitride (hBN) with polar B-N bonds. It is counterintuitive to find that the charge transfer between water and hBN is approximately 1 order of magnitude higher than that between water and graphene despite the fact that graphene is semiconducting and hBN is insulating. Our further analyses attribute this phenomenon to a higher tendency of water molecules to point a hydrogen atom toward the hBN surface compared to the graphene surface, although they have similar crystallographic structures. This single hydrogen-down water configuration on the hBN surface prompts electron delocalization from hBN and facilitates electron migration to water. Moreover, the polar B-N bonds in hBN result in a strong orbital overlap between nitrogen atoms and hydrogen atoms of water. A similar charge transfer enhancement is also observed between water and two-dimensional gallium nitride (GaN) and aluminum nitride (AlN), which also own polar bonds, and a positive correlation between the charge transfer and the bond polarity is demonstrated. Further simulations indicate that the friction coefficient of water on graphene and hBN surfaces positively correlates with the amount of charge transfer. These findings suggest that materials with polar bonds like hBN can serve as promising materials for biochemical sensors and energy conversion devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助苹果果汁采纳,获得10
1秒前
xx发布了新的文献求助10
2秒前
PN_Allen完成签到 ,获得积分10
3秒前
4秒前
4秒前
Nancy发布了新的文献求助10
10秒前
一方通行完成签到,获得积分10
12秒前
14秒前
15秒前
dhua完成签到,获得积分20
15秒前
qiaoshan_Jason完成签到,获得积分10
16秒前
Raymond发布了新的文献求助10
16秒前
16秒前
FOX完成签到,获得积分10
20秒前
苹果果汁发布了新的文献求助10
20秒前
电击小子发布了新的文献求助10
20秒前
lyw完成签到 ,获得积分10
21秒前
两袖清风完成签到 ,获得积分10
21秒前
甜美无剑完成签到,获得积分10
21秒前
火星上以柳完成签到,获得积分10
22秒前
王禹涵完成签到 ,获得积分10
23秒前
ding完成签到,获得积分20
26秒前
电击小子完成签到,获得积分10
28秒前
30秒前
xx完成签到 ,获得积分20
31秒前
zhuzhu发布了新的文献求助10
35秒前
大模型应助苹果果汁采纳,获得10
36秒前
NexusExplorer应助Steven采纳,获得10
37秒前
科研通AI2S应助woxin采纳,获得10
37秒前
37秒前
科研通AI5应助七喜采纳,获得10
39秒前
CipherSage应助kai采纳,获得10
40秒前
dadad发布了新的文献求助10
41秒前
Wtony完成签到 ,获得积分10
41秒前
小猪吹风完成签到 ,获得积分10
44秒前
46秒前
FashionBoy应助秋言采纳,获得10
46秒前
火星上的飞兰完成签到,获得积分10
47秒前
耶路生完成签到,获得积分10
50秒前
Shu发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401