Pathology-based deep learning features for predicting basal and luminal subtypes in bladder cancer

外科肿瘤学 基础(医学) 医学 病理 癌症 膀胱癌 肿瘤科 内科学 胰岛素
作者
Zongtai Zheng,Feihan F. Dai,Ji Liu,Yongqiang Zhang,Zhenwei Wang,Bangqi Wang,Xiaofu Qiu
出处
期刊:BMC Cancer [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12885-025-13688-x
摘要

Bladder cancer (BLCA) exists a profound molecular diversity, with basal and luminal subtypes having different prognostic and therapeutic outcomes. Traditional methods for molecular subtyping are often time-consuming and resource-intensive. This study aims to develop machine learning models using deep learning features from hematoxylin and eosin (H&E)-stained whole-slide images (WSIs) to predict basal and luminal subtypes in BLCA. RNA sequencing data and clinical outcomes were downloaded from seven public BLCA databases, including TCGA, GEO datasets, and the IMvigor210C cohort, to assess the prognostic value of BLCA molecular subtypes. WSIs from TCGA were used to construct and validate the machine learning models, while WSIs from Shanghai Tenth People's Hospital (STPH) and The Affiliated Guangdong Second Provincial General Hospital of Jinan University (GD2H) were used as external validations. Deep learning models were trained to obtained tumor patches within WSIs. WSI level deep learning features were extracted from tumor patches based on the RetCCL model. Support vector machine (SVM), random forest (RF), and logistic regression (LR) were developed using these features to classify basal and luminal subtypes. Kaplan-Meier survival and prognostic meta-analyses showed that basal BLCA patients had significantly worse overall survival compared to luminal BLCA patients (hazard ratio = 1.47, 95% confidence interval: 1.25-1.73, P < 0.001). The LR model based on tumor patch features selected by Resnet50 model demonstrated superior performance, achieving an area under the curve (AUC) of 0.88 in the internal validation set, and 0.81 and 0.64 in the external validation sets from STPH and GD2H, respectively. This model outperformed both junior and senior pathologists in the differentiation of basal and luminal subtypes (AUC: 0.85, accuracy: 74%, sensitivity: 66%, specificity: 82%). This study showed the efficacy of machine learning models in predicting the basal and luminal subtypes of BLCA based on the extraction of deep learning features from tumor patches in H&E-stained WSIs. The performance of the LR model suggests that the integration of AI tools into the diagnostic process could significantly enhance the accuracy of molecular subtyping, thereby potentially informing personalized treatment strategies for BLCA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jane发布了新的文献求助10
1秒前
33发布了新的文献求助10
2秒前
2秒前
lixiaorui发布了新的文献求助10
2秒前
传奇3应助斯文大门采纳,获得10
4秒前
充电宝应助UYang采纳,获得10
4秒前
郗妫完成签到,获得积分10
4秒前
皮皮完成签到,获得积分10
5秒前
fangplus发布了新的文献求助10
5秒前
5秒前
腾腾完成签到 ,获得积分10
9秒前
jun完成签到 ,获得积分10
10秒前
10秒前
Orange应助叽歪火烈鸟采纳,获得10
11秒前
八级大狂风完成签到,获得积分10
12秒前
深情安青应助19采纳,获得10
12秒前
李子敬完成签到,获得积分10
13秒前
缓慢采柳发布了新的文献求助10
13秒前
15秒前
15秒前
123完成签到,获得积分10
16秒前
indigo发布了新的文献求助10
16秒前
16秒前
所所应助刀客特幽采纳,获得10
18秒前
20秒前
21秒前
indigo完成签到 ,获得积分20
21秒前
喜悦夏彤发布了新的文献求助10
22秒前
23秒前
24秒前
吕岩完成签到,获得积分10
25秒前
xgx984发布了新的文献求助10
27秒前
wanci应助flywo采纳,获得10
27秒前
31秒前
喜悦夏彤完成签到,获得积分10
32秒前
mmmmmMM完成签到,获得积分10
32秒前
34秒前
烟花应助yyh12138采纳,获得10
35秒前
pppq完成签到,获得积分10
35秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774