Use of machine learning techniques to predict poor survival after hematopoietic cell transplantation for myelofibrosis

医学 骨髓纤维化 造血细胞 接收机工作特性 内科学 比例危险模型 移植 队列 肿瘤科 机器学习 造血 计算机科学 干细胞 遗传学 生物 骨髓
作者
Juan Carlos Hernández‐Boluda,Adrián Mosquera Orgueira,Luuk Gras,Linda Köster,Joe Tuffnell,Nicolaus Kröger,Massimiliano Gambella,Thomas Schroeder,Marie Robin,Katja Sockel,Jakob Passweg,Igor Wolfgang Blau,Ibrahim Yakoub‐Agha,Ruben Van Dijck,Matthias Stelljes,Henrik Sengeloev,Jan Vydra,Uwe Platzbecker,Moniek A DeWitte,Frédéric Baron
出处
期刊:Blood [American Society of Hematology]
卷期号:145 (26): 3139-3152 被引量:5
标识
DOI:10.1182/blood.2024027287
摘要

Abstract With the incorporation of effective therapies for myelofibrosis (MF), accurately predicting outcomes after allogeneic hematopoietic cell transplantation (allo-HCT) is crucial for determining the optimal timing for this procedure. Using data from 5183 patients with MF who underwent first allo-HCT between 2005 and 2020 at European Society for Blood and Marrow Transplantation centers, we examined different machine learning (ML) models to predict overall survival after transplant. The cohort was divided into a training set (75%) and a test set (25%) for model validation. A random survival forests (RSF) model was developed based on 10 variables: patient age, comorbidity index, performance status, blood blasts, hemoglobin, leukocytes, platelets, donor type, conditioning intensity, and graft-versus-host disease prophylaxis. Its performance was compared with a 4-level Cox regression–based score and other ML-based models derived from the same data set, and with the Center for International Blood and Marrow Transplant Research score. The RSF outperformed all comparators, achieving better concordance indices across both primary and postessential thrombocythemia/polycythemia vera MF subgroups. The robustness and generalizability of the RSF model was confirmed by Akaike information criterion and time-dependent receiver operating characteristic area under the curve metrics in both sets. Although all models were prognostic for nonrelapse mortality, the RSF provided better curve separation, effectively identifying a high-risk group comprising 25% of patients. In conclusion, ML enhances risk stratification in patients with MF undergoing allo-HCT, paving the way for personalized medicine. A web application (https://gemfin.click/ebmt) based on the RSF model offers a practical tool to identify patients at high risk for poor transplantation outcomes, supporting informed treatment decisions and advancing individualized care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
rr发布了新的文献求助10
1秒前
Jasper应助kongkong采纳,获得10
1秒前
2秒前
阿德利企鹅完成签到 ,获得积分10
2秒前
remohu完成签到,获得积分10
3秒前
桃月二九关注了科研通微信公众号
3秒前
JamesPei应助xinxxx采纳,获得10
3秒前
5秒前
救赎应助雨姐科研采纳,获得10
7秒前
7秒前
8秒前
Leexxxhaoo发布了新的文献求助10
8秒前
9秒前
czcz发布了新的文献求助10
10秒前
小郭0815发布了新的文献求助10
11秒前
11秒前
JamesPei应助SFQ采纳,获得10
11秒前
星星点灯完成签到,获得积分10
11秒前
11秒前
金金完成签到,获得积分20
11秒前
郁乾完成签到,获得积分10
12秒前
蒙萌葫完成签到,获得积分20
13秒前
英姑应助zgaolei采纳,获得30
14秒前
DALLOON发布了新的文献求助10
14秒前
15秒前
16秒前
赘婿应助bbcg采纳,获得10
17秒前
17秒前
orixero应助鲸鱼采纳,获得10
19秒前
2233完成签到 ,获得积分10
19秒前
o泡果奶完成签到,获得积分20
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
sss发布了新的文献求助10
21秒前
21秒前
看不懂完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222