Accurate Transcription Factor Activity Inference to Decipher Cell Identity from Single‐Cell Transcriptomic Data with MetaTF

生物 计算生物学 转录因子 细胞 肿瘤微环境 转录组 电池类型 癌细胞 癌症 细胞生物学 基因 基因表达 遗传学
作者
Yongfei Hu,Yuanyuan Zhu,Guangjue Tang,Ming Shan,Puwen Tan,Ying Yi,Xiyuan Zhang,Man Liu,Xinyu Li,Le Wu,Jia Chen,Hailong Zheng,Yan Huang,Zhuan Li,Xiaobo Li,Dong Wang
出处
期刊:Advanced Science [Wiley]
标识
DOI:10.1002/advs.202410745
摘要

Abstract Cellular heterogeneity within cancer tissues determines cancer progression and treatment response. Single‐cell RNA sequencing (scRNA‐seq) has provided a powerful approach for investigating the cellular heterogeneity of both cancer cells and stroma cells in the tumor microenvironment. However, the common practice to characterize cell identity based on the similarity of their gene expression profiles may not really indicate distinct cellular populations with unique roles. Generally, the cell identity and function are orchestrated by the expression of given specific genes tightly regulated by transcription factors (TFs). Therefore, deciphering TF activity is essential for gaining a better understanding of the uniqueness and functionality of each cell type. Herein, metaTF, a computational framework designed to infer TF activity in scRNA‐seq data, is introduced and existing methods are outperformed for estimating TF activity. It presents the improved effectiveness in characterizing cell identity during mouse hematopoietic stem cell development. Furthermore, metaTF provides a superior characterization of the functional identity of breast cancer epithelial cells, and identifies a novel subset of neural‐regulated T cells within the tumor immune microenvironment, which potentially activates BCL6 in response to neural‐related signals. Overall, metaTF enables robust TF activity analysis from scRNA‐seq data, significantly enhancing the characterization of cell identity and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的冷梅完成签到,获得积分10
刚刚
hhhhhhl发布了新的文献求助10
1秒前
yangyangyoung发布了新的文献求助10
2秒前
赛因斯完成签到,获得积分10
2秒前
WXT雪完成签到,获得积分10
3秒前
up完成签到 ,获得积分10
3秒前
more发布了新的文献求助30
4秒前
ren80522应助任性的冷梅采纳,获得10
4秒前
宝宝言兼发布了新的文献求助10
10秒前
FashionBoy应助yangyangyoung采纳,获得10
11秒前
来自3602完成签到,获得积分10
13秒前
YG完成签到,获得积分10
15秒前
qpp完成签到,获得积分10
16秒前
SciGPT应助Hevesy采纳,获得30
16秒前
无解完成签到,获得积分10
16秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
灰色白面鸮完成签到,获得积分10
23秒前
YElv完成签到,获得积分10
24秒前
5823364完成签到,获得积分10
25秒前
28秒前
英姑应助贪玩的笑阳采纳,获得10
38秒前
小毛完成签到,获得积分10
40秒前
hhhhhhl完成签到,获得积分10
41秒前
张闲完成签到,获得积分10
41秒前
君齐发布了新的文献求助10
41秒前
溪泉发布了新的文献求助10
42秒前
爆米花应助aaaaarfv采纳,获得10
43秒前
量子星尘发布了新的文献求助10
44秒前
44秒前
hhhhhhl发布了新的文献求助10
47秒前
47秒前
47秒前
8R60d8应助fufu采纳,获得10
48秒前
48秒前
49秒前
51秒前
52秒前
53秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864358
求助须知:如何正确求助?哪些是违规求助? 3406687
关于积分的说明 10651069
捐赠科研通 3130689
什么是DOI,文献DOI怎么找? 1726537
邀请新用户注册赠送积分活动 831802
科研通“疑难数据库(出版商)”最低求助积分说明 780009