亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Human Sequential Decision Making with Reinforcement Learning

强化学习 钢筋 计算机科学 马尔可夫决策过程 人工智能 运筹学 数学 心理学 马尔可夫过程 社会心理学 统计
作者
Hamsa Bastani,Osbert Bastani,Wichinpong Park Sinchaisri
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.02455
摘要

Workers spend a significant amount of time learning how to make good decisions. Evaluating the efficacy of a given decision, however, can be complicated—for example, decision outcomes are often long-term and relate to the original decision in complex ways. Surprisingly, even though learning good decision-making strategies is difficult, the strategies can often be expressed in simple and concise forms. Focusing on sequential decision making, we design a novel machine learning algorithm that is capable of extracting “best practices” from trace data and conveying its insights to humans in the form of interpretable “tips.” Our algorithm selects the tip that best bridges the gap between the actions taken by human workers and those taken by the optimal policy in a way that accounts for which actions are consequential for achieving higher performance. We evaluate our approach through a series of randomized controlled experiments where participants manage a virtual kitchen. Our experiments show that the tips generated by our algorithm can significantly improve human performance relative to intuitive baselines. In addition, we discuss a number of empirical insights that can help inform the design of algorithms intended for human-AI interfaces. For instance, we find evidence that participants do not simply blindly follow our tips; instead, they combine them with their own experience to discover additional strategies for improving performance. This paper has been This paper was accepted by Elena Katok for the Special Issue on The Human-Algorithm Connection. Funding: This work was supported by the Mack Institute for Innovation Management, the Berkeley Artificial Intelligence Research Open Research Commons, and The Wharton Behavioral Lab. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.02455 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zion完成签到,获得积分0
1秒前
3秒前
ren发布了新的文献求助10
8秒前
10秒前
好巧发布了新的文献求助10
15秒前
kanoz完成签到 ,获得积分10
16秒前
19秒前
19秒前
有足量NaCl完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
25秒前
有足量NaCl发布了新的文献求助10
26秒前
33秒前
丘比特应助有足量NaCl采纳,获得10
34秒前
Wei发布了新的文献求助10
37秒前
47秒前
53秒前
54秒前
共享精神应助六层楼采纳,获得10
59秒前
酷炫无敌发布了新的文献求助10
59秒前
1分钟前
六层楼发布了新的文献求助10
1分钟前
1分钟前
六层楼完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
吴彦祖完成签到,获得积分10
1分钟前
情怀应助啦啦采纳,获得10
1分钟前
吃肉的兔子完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助酷炫无敌采纳,获得10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
酷炫无敌发布了新的文献求助10
1分钟前
带鱼的笔芯完成签到,获得积分20
1分钟前
2分钟前
葛觅荷发布了新的文献求助10
2分钟前
葛觅荷完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4229107
求助须知:如何正确求助?哪些是违规求助? 3762452
关于积分的说明 11823931
捐赠科研通 3422637
什么是DOI,文献DOI怎么找? 1878217
邀请新用户注册赠送积分活动 931330
科研通“疑难数据库(出版商)”最低求助积分说明 839157