亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Human Sequential Decision Making with Reinforcement Learning

强化学习 钢筋 计算机科学 马尔可夫决策过程 人工智能 运筹学 数学 心理学 马尔可夫过程 社会心理学 统计
作者
Hamsa Bastani,Osbert Bastani,Wichinpong Park Sinchaisri
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.02455
摘要

Workers spend a significant amount of time learning how to make good decisions. Evaluating the efficacy of a given decision, however, can be complicated—for example, decision outcomes are often long-term and relate to the original decision in complex ways. Surprisingly, even though learning good decision-making strategies is difficult, the strategies can often be expressed in simple and concise forms. Focusing on sequential decision making, we design a novel machine learning algorithm that is capable of extracting “best practices” from trace data and conveying its insights to humans in the form of interpretable “tips.” Our algorithm selects the tip that best bridges the gap between the actions taken by human workers and those taken by the optimal policy in a way that accounts for which actions are consequential for achieving higher performance. We evaluate our approach through a series of randomized controlled experiments where participants manage a virtual kitchen. Our experiments show that the tips generated by our algorithm can significantly improve human performance relative to intuitive baselines. In addition, we discuss a number of empirical insights that can help inform the design of algorithms intended for human-AI interfaces. For instance, we find evidence that participants do not simply blindly follow our tips; instead, they combine them with their own experience to discover additional strategies for improving performance. This paper has been This paper was accepted by Elena Katok for the Special Issue on The Human-Algorithm Connection. Funding: This work was supported by the Mack Institute for Innovation Management, the Berkeley Artificial Intelligence Research Open Research Commons, and The Wharton Behavioral Lab. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.02455 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的铭应助Vincent1990采纳,获得10
9秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
18秒前
李健应助wise111采纳,获得10
22秒前
24秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
40秒前
48秒前
朴素的小霸王完成签到 ,获得积分10
48秒前
沿途有你完成签到 ,获得积分10
48秒前
研究研究关注了科研通微信公众号
50秒前
LJ_scholar完成签到,获得积分10
50秒前
ding应助如意的代亦采纳,获得10
51秒前
dd完成签到 ,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
yu关闭了yu文献求助
1分钟前
1分钟前
snail完成签到,获得积分10
1分钟前
yu完成签到,获得积分20
1分钟前
喜乐多完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
yu发布了新的文献求助10
1分钟前
wise111发布了新的文献求助10
1分钟前
LL发布了新的文献求助10
2分钟前
cici发布了新的文献求助10
2分钟前
荣誉完成签到,获得积分10
2分钟前
cici完成签到,获得积分20
2分钟前
和谐蛋蛋完成签到,获得积分10
2分钟前
2分钟前
是真灵还是机灵完成签到 ,获得积分10
2分钟前
熊泰山完成签到 ,获得积分10
2分钟前
王羲之完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ZXneuro完成签到,获得积分10
2分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892360
求助须知:如何正确求助?哪些是违规求助? 3435118
关于积分的说明 10791325
捐赠科研通 3160087
什么是DOI,文献DOI怎么找? 1745316
邀请新用户注册赠送积分活动 842857
科研通“疑难数据库(出版商)”最低求助积分说明 786863