Exploring More from Multiple Gait Modalities for Human Identification

鉴定(生物学) 步态 模式 物理医学与康复 计算机科学 医学 生物 社会学 生态学 社会科学
作者
Dongyang Jin,Chao Fan,Weihua Chen,Shiqi Yu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (4): 4120-4128
标识
DOI:10.1609/aaai.v39i4.32432
摘要

The gait, as a kind of soft biometric characteristic, can reflect the distinct walking patterns of individuals at a distance, exhibiting a promising technique for unrestrained human identification. With largely excluding gait-unrelated cues hidden in RGB videos, the silhouette and skeleton, though visually compact, have acted as two of the most prevailing gait modalities for a long time. Recently, several attempts have been made to introduce more informative data forms like human parsing and optical flow images to capture gait characteristics, along with multi-branch architectures. However, due to the inconsistency within model designs and experiment settings, we argue that a comprehensive and fair comparative study among these popular gait modalities, involving the representational capacity and fusion strategy exploration, is still lacking. From the perspectives of fine vs. coarse-grained shape and whole vs. pixel-wise motion modeling, this work presents an in-depth investigation of three popular gait representations, i.e., silhouette, human parsing, and optical flow, with various fusion evaluations, and experimentally exposes their similarities and differences. Based on the obtained insights, we further develop a C²Fusion strategy, consequently building our new framework MultiGait++. C²Fusion preserves commonalities while highlighting differences to enrich the learning of gait features. To verify our findings and conclusions, extensive experiments on Gait3D, GREW, CCPG, and SUSTech1K are conducted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaolifeidao发布了新的文献求助10
1秒前
LL发布了新的文献求助10
1秒前
amberzyc发布了新的文献求助20
1秒前
1秒前
1秒前
权志龙完成签到,获得积分10
1秒前
公主完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
upup发布了新的文献求助10
3秒前
Kinsley完成签到,获得积分10
3秒前
xxx应助jjn采纳,获得10
3秒前
3秒前
3秒前
小李完成签到,获得积分10
3秒前
李健应助amanda采纳,获得10
4秒前
焦糖蛋卷发布了新的文献求助10
4秒前
4秒前
探子安发布了新的文献求助10
5秒前
晓磊发布了新的文献求助200
5秒前
胡雪梅完成签到 ,获得积分10
6秒前
沉静篮球完成签到 ,获得积分10
6秒前
粗心的乐松完成签到,获得积分10
7秒前
7秒前
木头发布了新的文献求助10
7秒前
烟花应助reny采纳,获得10
7秒前
汉堡包应助enen采纳,获得10
8秒前
acetdw发布了新的文献求助10
8秒前
8秒前
Hudson完成签到,获得积分10
8秒前
9秒前
朴素青雪发布了新的文献求助10
9秒前
dkb612发布了新的文献求助30
9秒前
归尘应助苗玉采纳,获得10
10秒前
李健应助mx采纳,获得10
11秒前
量子星尘发布了新的文献求助100
11秒前
Sissi完成签到,获得积分10
12秒前
12秒前
12秒前
东北信风完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Lactic acid bacteria as cell factories: synthetic biology and metabolic engineering 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4660076
求助须知:如何正确求助?哪些是违规求助? 4043449
关于积分的说明 12506702
捐赠科研通 3735577
什么是DOI,文献DOI怎么找? 2062451
邀请新用户注册赠送积分活动 1092300
科研通“疑难数据库(出版商)”最低求助积分说明 973173