Accurate Cancer Diagnosis and Treatment Monitoring through Multiplexed Profiling of Protein Markers on Small Extracellular Vesicles

细胞外小泡 仿形(计算机编程) 计算生物学 纳米技术 生物 化学 材料科学 细胞生物学 计算机科学 操作系统
作者
Ting-Ju Ren,Yingzhi Zhang,Qi Zhang,Marselina Irasonia Tan,Jiahui Gu,Yongping Tong,Yue Wang,Chunguang Yang,Zhang‐Run Xu
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c02864
摘要

The detection of small extracellular vesicles (sEVs) is currently a pivotal liquid biopsy approach for noninvasive cancer diagnosis. However, the lack of adequate specificity and sensitivity, as well as labor-intensive purification and analysis procedures, present challenges in isolating and profiling sEVs. Here, we present a protein-specific enzymatic optical reporter deposition-based liquid biopsy assay for the rapid and efficient capture and ultrasensitive detection of sEVs using a minimal volume of initial biofluids (10 μL). Biotin aptamers were employed to label sEV proteins for peroxidase conjugation, catalyzing the conversion of fluorescein tyramine into highly reactive free radicals. Efficient signal conversion was achieved by depositing nanoheterolayers composed of covalent tyraminated complexes onto sEV surfaces. The present method offers a detection limit of 6.4 × 103 particles mL-1 with a linear range of 104-1010 particles mL-1 for sEVs. Two machine learning algorithms, principal coordinates analysis and principal component analysis, were subsequently applied for dimensionality reduction. In a clinical cohort of 84 patients, including 6 cancer types and noncancer cases, the assay achieved an overall accuracy of 100% (95% confidence interval) in distinguishing between cancer and noncancer controls and 96% in classifying cancer types. As drugs are frequently administered to patients to modulate the activity of tumor cells, we investigated the efficacy of this strategy in treatment monitoring, achieving an overall accuracy of 100%. This strategy demonstrates a cost-effective, rapid, and low sample volume consumption approach that holds significant potential for precise cancer diagnosis and auxiliary assessment of drug response in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Blue发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
2秒前
西粤学完成签到,获得积分10
3秒前
等待雅寒发布了新的文献求助10
3秒前
A.y.w完成签到,获得积分10
4秒前
西粤学发布了新的文献求助10
6秒前
7秒前
8秒前
阿水完成签到 ,获得积分10
9秒前
pcr163应助悦悦采纳,获得100
10秒前
10秒前
鱼鱼子发布了新的文献求助10
11秒前
啊盼盼完成签到,获得积分10
11秒前
12秒前
14秒前
天天有年年发完成签到 ,获得积分10
14秒前
Ava应助多情的丹亦采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
Marciu33发布了新的文献求助10
20秒前
22秒前
细胞呵呵完成签到,获得积分10
23秒前
科研通AI5应助鱼鱼子采纳,获得10
24秒前
自信的九娘完成签到,获得积分10
25秒前
26秒前
26秒前
bagai完成签到,获得积分10
26秒前
核桃发布了新的文献求助30
28秒前
29秒前
30秒前
鉴衡完成签到,获得积分10
31秒前
31秒前
核桃发布了新的文献求助10
32秒前
我喝白开水完成签到,获得积分10
33秒前
33秒前
鉴衡发布了新的文献求助10
35秒前
善学以致用应助等待雅寒采纳,获得10
35秒前
Ww完成签到,获得积分10
35秒前
科研通AI5应助珂儿采纳,获得10
35秒前
在水一方应助果然采纳,获得10
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248424
求助须知:如何正确求助?哪些是违规求助? 3781617
关于积分的说明 11872456
捐赠科研通 3434287
什么是DOI,文献DOI怎么找? 1884846
邀请新用户注册赠送积分活动 936418
科研通“疑难数据库(出版商)”最低求助积分说明 842350