Machine learning technique-based four-autoantibody test for early detection of esophageal squamous cell carcinoma: a multicenter, retrospective study with a nested case–control study

医学 套式病例对照研究 食管鳞状细胞癌 自身抗体 多中心研究 回顾性队列研究 基底细胞 病例对照研究 内科学 肿瘤科 病理 免疫学 抗体 随机对照试验
作者
Yi‐Wei Xu,Yu‐Hui Peng,Can-Tong Liu,Hao Chen,Ling‐Yu Chu,Hai-Lu Chen,Zhi‐Yong Wu,Wenqiang Wei,Li‐Yan Xu,Fang-Cai Wu,En‐Min Li
出处
期刊:BMC Medicine [BioMed Central]
卷期号:23 (1) 被引量:1
标识
DOI:10.1186/s12916-025-04066-2
摘要

Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high diagnostic accuracy for clinical and preclinical esophageal squamous cell carcinoma (ESCC) using machine learning (ML) algorithms. We identified potential autoantibodies against tumor-associated antigens with serological proteome analysis. Serum autoantibody levels were measured by ELISA. Using a training set (n = 531), 102 models based on ML algorithms were constructed, and Partial Least Squares Generalized Linear Models (plsRglm) was selected out using receiver operating characteristics (ROC), Kolmogorov-Smirnov (K-S) test, and Population Stability Index (PSI), and further validated through an internal validation set (n = 413), external validation set 1 (n = 371), and external validation set 2 (n = 202). Then, we validated the ability of plsRglm model in predicting preclinical ESCC by a nested case-control study (24 preclinical ESCCs and 112 matched controls) within a population-based prospective cohort study. ROC analysis, K-S test, and PSI showed that plsRglm model based on four autoantibodies (ALDOA, ENO1, p53, and NY-ESO-1) exhibited the better diagnostic performance and robustness, which provided a high diagnostic accuracy in diagnosing ESCC with the respective AUCs (sensitivities and specificities) of 0.860 (68.8% and 90.4%) in the training set, 0.826 (65.3% and 89.1%) in the internal validation set, and 0.851 (69.2% and 87.3%) in the external validation set 1. For early-stage ESCC, this signature also maintained diagnostic performance [0.817 (62.3% and 90.4%) in the training set; 0.842 (62.5% and 89.1%) in the internal validation set; 0.854 (63.2% and 87.3%) in the external validation set 1; and 0.850 (67.3% and 90.1%) in the external validation set 2]. In the nested case-control study, this plsRglm model could detect the presence of preclinical ESCC with the AUC of 0.723, sensitivity of 54.2%, and specificity of 86.6%. Our findings indicated that the plsRglm model based on four autoantibodies might help identify preclinical and early-stage ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
周钦完成签到,获得积分10
3秒前
啦啦啦啦完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
baby完成签到,获得积分10
5秒前
Owen应助翁曼雁采纳,获得10
7秒前
科研通AI5应助终陌采纳,获得10
8秒前
8秒前
852应助小猪佩奇采纳,获得10
10秒前
12秒前
12秒前
15秒前
星期一发布了新的文献求助30
16秒前
任性静祝完成签到 ,获得积分10
18秒前
20秒前
成就的行云完成签到,获得积分20
20秒前
彬彬发布了新的文献求助10
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
小猪佩奇发布了新的文献求助10
25秒前
allen完成签到,获得积分10
26秒前
传奇3应助LucienS采纳,获得10
26秒前
顺心香露发布了新的文献求助10
27秒前
终陌发布了新的文献求助10
27秒前
wzwd关注了科研通微信公众号
29秒前
全或无完成签到,获得积分10
31秒前
华仔应助傅夜山采纳,获得30
31秒前
35秒前
希望天下0贩的0应助fsz采纳,获得10
37秒前
41秒前
41秒前
玛卡巴卡发布了新的文献求助10
43秒前
47秒前
俊秀的芫发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
49秒前
小二郎应助迷路中的骑手采纳,获得10
53秒前
毛毛猫给毛毛猫的求助进行了留言
53秒前
54秒前
57秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863755
求助须知:如何正确求助?哪些是违规求助? 3405984
关于积分的说明 10648096
捐赠科研通 3129879
什么是DOI,文献DOI怎么找? 1726159
邀请新用户注册赠送积分活动 831457
科研通“疑难数据库(出版商)”最低求助积分说明 779815