亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deepfake detection using deep learning methods: A systematic and comprehensive review

计算机科学 数据科学 分类 保密 深度学习 人工智能 计算机安全
作者
Arash Heidari,Nima Jafari Navimipour,Hasan Dağ,Mehmet Ünal
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (2) 被引量:84
标识
DOI:10.1002/widm.1520
摘要

Abstract Deep Learning (DL) has been effectively utilized in various complicated challenges in healthcare, industry, and academia for various purposes, including thyroid diagnosis, lung nodule recognition, computer vision, large data analytics, and human‐level control. Nevertheless, developments in digital technology have been used to produce software that poses a threat to democracy, national security, and confidentiality. Deepfake is one of those DL‐powered apps that has lately surfaced. So, deepfake systems can create fake images primarily by replacement of scenes or images, movies, and sounds that humans cannot tell apart from real ones. Various technologies have brought the capacity to change a synthetic speech, image, or video to our fingers. Furthermore, video and image frauds are now so convincing that it is hard to distinguish between false and authentic content with the naked eye. It might result in various issues and ranging from deceiving public opinion to using doctored evidence in a court. For such considerations, it is critical to have technologies that can assist us in discerning reality. This study gives a complete assessment of the literature on deepfake detection strategies using DL‐based algorithms. We categorize deepfake detection methods in this work based on their applications, which include video detection, image detection, audio detection, and hybrid multimedia detection. The objective of this paper is to give the reader a better knowledge of (1) how deepfakes are generated and identified, (2) the latest developments and breakthroughs in this realm, (3) weaknesses of existing security methods, and (4) areas requiring more investigation and consideration. The results suggest that the Conventional Neural Networks (CNN) methodology is the most often employed DL method in publications. According to research, the majority of the articles are on the subject of video deepfake detection. The majority of the articles focused on enhancing only one parameter, with the accuracy parameter receiving the most attention. This article is categorized under: Technologies > Machine Learning Algorithmic Development > Multimedia Application Areas > Science and Technology

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asd1576562308完成签到 ,获得积分10
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
友好凌柏完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
任性大米完成签到 ,获得积分10
2分钟前
2分钟前
烟花应助zz采纳,获得10
2分钟前
陈平安完成签到 ,获得积分10
3分钟前
身法马可波罗完成签到 ,获得积分10
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
执着的夜春完成签到,获得积分10
3分钟前
4分钟前
Lesley发布了新的文献求助10
4分钟前
Cosmosurfer完成签到,获得积分10
5分钟前
5分钟前
WWZ发布了新的文献求助10
5分钟前
tonghau895完成签到 ,获得积分10
5分钟前
imomoe完成签到,获得积分10
6分钟前
Georgechan完成签到,获得积分10
6分钟前
史前巨怪完成签到,获得积分10
6分钟前
赘婿应助科研通管家采纳,获得10
7分钟前
爆米花应助科研通管家采纳,获得10
7分钟前
小鱼完成签到 ,获得积分10
7分钟前
wykion完成签到,获得积分0
8分钟前
潘果果完成签到,获得积分10
8分钟前
Inten完成签到 ,获得积分10
8分钟前
8分钟前
xxx完成签到,获得积分10
8分钟前
吴嘉俊完成签到 ,获得积分10
8分钟前
8分钟前
葱饼完成签到 ,获得积分10
8分钟前
an完成签到,获得积分10
8分钟前
南无双发布了新的文献求助50
8分钟前
blenx完成签到,获得积分10
9分钟前
科研通AI2S应助欣喜的念寒采纳,获得10
9分钟前
去以六月息完成签到 ,获得积分10
9分钟前
酷波er应助xxx采纳,获得10
9分钟前
852应助Corn_Dog采纳,获得10
10分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782649
求助须知:如何正确求助?哪些是违规求助? 3328054
关于积分的说明 10234287
捐赠科研通 3043022
什么是DOI,文献DOI怎么找? 1670433
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758971