通透性
枯草芽孢杆菌
群体感应
生物
细菌
寡肽
趋化性
蜡样芽孢杆菌
生物膜
单元格信封
PEP群易位
基因
微生物学
生物化学
大肠杆菌
遗传学
受体
肽
作者
Tasneem Bareia,Shaul Pollak,Polina Guler,Shani Puyesky,Avigdor Eldar
出处
期刊:Microbiology
[Microbiology Society]
日期:2023-09-27
卷期号:169 (9)
被引量:4
摘要
Oligopeptide-permeases (Opps) are used by bacteria to import short peptides. In addition to their metabolic benefit, imported short peptides are used in many Gram-positive bacteria as signalling molecules of the RRNPP super-family of quorum-sensing systems, making Opps an integral part of cell–cell communication. In some Gram-positive bacteria there exist multiple Opps and the relative importance of those to RRNPP quorum sensing are not fully clear. Specifically, in Bacillus subtilis , the Gram-positive model species, there exist two homologous oligopeptide permeases named Opp and App. Previous work showed that the App system is mutated in lab strain 168 and its recovery partially complements an Opp mutation for several developmental processes. Yet, the nature of the impact of App on signalling and development in wild-type strains, where both permeases are active was not studied. Here we re-examine the impact of the two permease systems. We find that App has a minor contribution to biofilm formation, surfactin production and phage infection compared to the effect of Opp. This reduced effect is also reflected in its lower ability to import the signals of four different Rap-Phr RRNPP systems. Further analysis of the App system revealed that, unlike Opp, some App genes have undergone horizontal transfer, resulting in two distinct divergent alleles of this system in B. subtilis strains. We found that both alleles were substantially better adapted than the Opp system to import an exogenous RRNPP signal of the Bacillus cereus group PlcR-PapR system. In summary, we find that the App system has only a minor role in signalling but may still be crucial for the import of other peptides.
科研通智能强力驱动
Strongly Powered by AbleSci AI