Research on a colour solid built by gridded colour mixing of nine primary‐coloured fibres and its neural network colour prediction approach

洋红 混合(物理) 青色 反射率 色调 人工神经网络 材料科学 色空间 数学 RGB颜色模型 光学 生物系统 人工智能 计算机科学 物理 复合材料 墨水池 图像(数学) 生物 量子力学
作者
Xianqiang Sun,Yuan Xue,Jingli Xue,Guang Jin
出处
期刊:Coloration Technology [Wiley]
卷期号:140 (5): 698-709
标识
DOI:10.1111/cote.12726
摘要

Abstract According to the demand for colour prediction for coloured yarn, two adjacent colours chosen from red (R), yellow (Y), green (G), cyan (C), blue (B) and magenta (M) fibres were combined with fibres of dark grey (O 1 ), medium grey (O 2 ) and light grey (O 3 ), respectively, and then ternary coupling‐superposition mixing was performed to acquire a colour solid consisting of three lightnesses, 18 colour mixing units and 18 × ( m + 1) × n grid points. An integrated colour mixing with 20% hue gradient and 33.33% saturation gradient was performed to achieve a colour solid containing 360 grid points, then using it as the sample space for the colour prediction model. A total of 360 typical samples were established by the grid points, 213 yarns and fabrics were prepared by the typical sample parameters, and the corresponding reflectance was accessed by a spectrophotometer. Neural network models for predicting reflectance by mixing ratios as well as forecasting mixing ratios by reflectance, were established. The 12 non‐grid point parameters were chosen to prepare corresponding yarns and fabrics, and the corresponding reflectance was measured. The predicted and measured values of the neural network model were compared to verify its predictive ability and generalisability. The results showed that when predicting the colour by the mixing ratios, the colour difference between the predicted and measured samples ranged from 1.5 to 3.4, with an average of 2.4; and when forecasting the mixing ratios by the colour, the colour difference ranged from 0.8 to 5.6, with an average of 2.4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuan发布了新的文献求助10
2秒前
Hello应助liushirui采纳,获得10
3秒前
张骥发布了新的文献求助10
3秒前
酷波er应助z7486采纳,获得10
4秒前
传奇3应助愿好采纳,获得10
4秒前
ri_290完成签到,获得积分10
5秒前
chayue发布了新的文献求助10
6秒前
欣慰紫夏发布了新的文献求助10
6秒前
8秒前
打打应助可靠巧荷采纳,获得10
9秒前
9秒前
星辰大海应助福福采纳,获得10
10秒前
脑洞疼应助ran采纳,获得10
12秒前
华仔应助欣慰紫夏采纳,获得10
12秒前
852应助wangpeiyu0813采纳,获得10
13秒前
kaka应助小稻草人采纳,获得10
17秒前
17秒前
慕青应助机灵采萱采纳,获得10
19秒前
传奇3应助chayue采纳,获得10
19秒前
19秒前
21秒前
小蘑菇应助虞美人采纳,获得10
23秒前
ran发布了新的文献求助10
23秒前
弄香完成签到,获得积分10
25秒前
koko发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
28秒前
帅的过分完成签到 ,获得积分10
28秒前
ran完成签到,获得积分10
29秒前
汉堡包应助冬至采纳,获得10
30秒前
白露为霜发布了新的文献求助10
32秒前
34秒前
35秒前
KinoFreeze完成签到 ,获得积分10
35秒前
36秒前
田様应助zz采纳,获得10
36秒前
aaaa发布了新的文献求助10
37秒前
西柚子发布了新的文献求助10
37秒前
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4209315
求助须知:如何正确求助?哪些是违规求助? 3743358
关于积分的说明 11783113
捐赠科研通 3413214
什么是DOI,文献DOI怎么找? 1872959
邀请新用户注册赠送积分活动 927564
科研通“疑难数据库(出版商)”最低求助积分说明 837127