热失控
材料科学
相变材料
阻燃剂
热导率
电池(电)
热的
相(物质)
锂(药物)
锂离子电池
电子设备和系统的热管理
复合材料
复合数
核工程
相变
法律工程学
工程物理
机械工程
工程类
热力学
化学
医学
功率(物理)
物理
有机化学
内分泌学
作者
Mingyi Chen,Minghao Zhu,Siyu Zhang,Dongxu Ouyang,Jingwen Weng,Ruichao Wei,Yin Chen,Luyao Zhao,Jian Wang
标识
DOI:10.1016/j.applthermaleng.2023.121401
摘要
In the application of lithium-ion battery (LIB) modules, the pivotal factor in ensuring battery safety performance lies in enhancing thermal management effectiveness and adeptly curbing the thermal runaway propagation (TRP). This paper synthesizes the innovative type of high thermal conductivity composite phase change material (CPCM) and flame retardant phase change material (RPCM) with the inclusion of intumescent flame retardant (IFR). The structural and thermal attributes of these phase change materials (PCMs) are meticulously examined. The findings reveal that the RPCM, fortified with 10% SiC and 10% IFR, attains a peak thermal conductivity of 4.022 W/(m·K) and latent heat of 112.9 J/g. Diverse PCMs are then employed to scrutinize the thermal management of single cell and the mitigation of TRP in battery modules. The outcomes of charging and discharging cycles demonstrate that PCM cooling effectively curbs maximum temperature elevation. The most efficient PCMs reduce the maximum temperature by around 7.8 ℃ and 7.4 ℃. The impact of RPCMs and aerogel on curtailing TRP unveils that their amalgamation notably diminishes the risk of TRP and prolongs the propagation time. This research contributes a novel approach by exploring advanced PCMs potential to tackle heat dissipation optimization and TRP suppression for LIB modules simultaneously, and these findings proffer valuable information into enhancing battery operational safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI