清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning prediction and interpretation of the impact of microplastics on soil properties

微塑料 口译(哲学) 环境化学 环境科学 土壤科学 化学 计算机科学 程序设计语言
作者
Piumi Amasha Withana,Jie Li,Sachini Supunsala Senadheera,Chuanfang Fan,Yin Wang,Yong Sik Ok
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:341: 122833-122833 被引量:22
标识
DOI:10.1016/j.envpol.2023.122833
摘要

The annual microplastic (MP) release into soils is 4–23 times higher than that into oceans, significantly impacting soil quality. However, the mechanisms underlying how MPs impact soil properties remain largely unknown. Soil-MP interactions are complex because of soil heterogeneity and varying MP properties. This lack of understanding was exacerbated by the diverse experimental conditions and soil types used in this study. Predicting changes in soil properties in the presence of MPs is challenging, laborious, and time-consuming. To address these issues, machine learning was applied to fit datasets from peer-reviewed publications to predict and interpret how MPs influence soil properties, including pH, dissolved organic carbon (DOC), total P, NO3−-N, NH4+-N, and acid phosphatase enzyme activity (acid P). Among the developed models, the gradient boost regression (GBR) model showed the highest R2 (0.86–0.99) compared to the decision tree and random forest models. The GBR model interpretation showed that MP properties contributed more than 50% to altering the acid P and NO3−-N concentrations in soils, whereas they had a negligible impact on total P and 10–20% impact on soil pH, DOC, and NH4+-N. Specifically, the size of MPs was the dominant factor influencing acid P (89.3%), pH (71.6%), and DOC (44.5%) in soils. NO3−-N was mainly affected by the MP type (52.0%). The NH4+-N was mainly affected by the MP dose (46.8%). The quantitative insights into the impact of MPs on soil properties of this study could aid in understanding the roles of MPs in soil systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
隔壁老王发布了新的文献求助10
25秒前
28秒前
35秒前
41秒前
ywzwszl完成签到,获得积分10
1分钟前
华仔应助隔壁老王采纳,获得10
1分钟前
1分钟前
Gary完成签到 ,获得积分10
1分钟前
满意的伊发布了新的文献求助10
2分钟前
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
3分钟前
生信小菜鸟完成签到 ,获得积分10
3分钟前
冷傲半邪完成签到,获得积分10
3分钟前
3分钟前
Boris完成签到 ,获得积分10
3分钟前
bc举报拓跋静珊求助涉嫌违规
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
子阅发布了新的文献求助10
5分钟前
林夕完成签到 ,获得积分10
6分钟前
水的很厉害完成签到,获得积分10
6分钟前
6分钟前
子阅发布了新的文献求助10
6分钟前
bc驳回了诗轩应助
6分钟前
7分钟前
爱桃子发布了新的文献求助10
7分钟前
bc完成签到,获得积分0
7分钟前
8分钟前
喜看财经发布了新的文献求助10
8分钟前
8分钟前
DrS发布了新的文献求助10
8分钟前
DrS完成签到,获得积分10
9分钟前
9分钟前
9分钟前
居居侠完成签到 ,获得积分10
10分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360188
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058