亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images

计算机科学 块(置换群论) 目标检测 人工智能 计算复杂性理论 计算 推论 计算机视觉 实时计算 模式识别(心理学) 算法 几何学 数学
作者
Siyu Xie,Mei Zhou,Chunle Wang,Shi-Sheng Huang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 388-399 被引量:12
标识
DOI:10.1109/jstars.2023.3329235
摘要

Detecting and recognizing objects are crucial steps in interpreting remote sensing images. At present, deep learning methods are predominantly employed for detecting objects in remote sensing images, necessitating a significant number of floating-point computations. However, low computing power and small storage in computing devices are hard to afford the large model parameter quantity and high computing complexity. To address these constraints, this paper presents a lightweight detection model called CSPPartial-YOLO. This model introduces the PHDC Block module that combines hybrid dilated convolutions and partial convolutions to increase the receptive field at a low computational cost. By using the PHDC Block within the model design framework of cross-stage partial connection, we construct CSPPartialStage that reduces computational burden without compromising accuracy. Coordinate attention module is also employed in CSPPartialStage to aggregate position information and improve the detection of small objects with complex distributions in remote sensing images. A backbone and neck are developed with CSPPartialStage, and the rotation head of the PPYOLOE-R model adapts to objects of multiple orientations in remote sensing images. Empirical experiments using the DOTA dataset and SODA-A dataset indicate that our method is faster and resource efficient than the baseline model (PPYOLOE-R), while achieving higher accuracy. Furthermore, comparisons with current state-of-the-art YOLO series detectors show our proposed model's competitiveness in terms of speed and accuracy. Moreover, compared to mainstream lightweight networks, our model exhibits better hardware adaptability, with lower inference latency and higher detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dawn发布了新的文献求助10
6秒前
AMENG完成签到,获得积分10
13秒前
SCI完成签到,获得积分10
26秒前
脑洞疼应助dawn采纳,获得10
27秒前
dawn完成签到,获得积分10
36秒前
38秒前
满意的伊完成签到,获得积分10
41秒前
Goss完成签到,获得积分10
52秒前
wangrblzu应助科研通管家采纳,获得10
1分钟前
wangrblzu应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
wangrblzu应助科研通管家采纳,获得10
1分钟前
1分钟前
维多利亚少年完成签到,获得积分10
1分钟前
梁昊关注了科研通微信公众号
1分钟前
12345完成签到,获得积分10
2分钟前
2分钟前
云水雾心发布了新的文献求助10
2分钟前
wangrblzu应助科研通管家采纳,获得10
3分钟前
Haihai应助梁昊采纳,获得10
3分钟前
科研通AI5应助liam采纳,获得30
3分钟前
无花果应助liam采纳,获得30
4分钟前
4分钟前
liam发布了新的文献求助30
4分钟前
酷波er应助xyliu采纳,获得10
4分钟前
4分钟前
xyliu发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
liam发布了新的文献求助30
5分钟前
科研通AI5应助liam采纳,获得30
6分钟前
Ocean应助科研通管家采纳,获得20
7分钟前
allrubbish完成签到,获得积分10
7分钟前
乘风完成签到,获得积分10
7分钟前
852应助HQS采纳,获得10
8分钟前
HQS完成签到,获得积分10
8分钟前
8分钟前
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840808
求助须知:如何正确求助?哪些是违规求助? 3382714
关于积分的说明 10526365
捐赠科研通 3102563
什么是DOI,文献DOI怎么找? 1708902
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773584