Glutathione/pH-responsive copper-based nanoplatform for amplified chemodynamic therapy through synergistic cycling regeneration of reactive oxygen species and dual glutathione depletion

活性氧 谷胱甘肽 化学 过氧化氢 氧化应激 肿瘤微环境 抗氧化剂 癌细胞 生物化学 生物物理学 癌症研究 癌症 肿瘤细胞 生物 遗传学
作者
Sihan Jia,Sunkui Ke,Li Tu,Shengqiang Chen,Bingkun Luo,Yeqi Xiong,Yang Li,Peiyuan Wang,Shefang Ye
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:652: 329-340 被引量:8
标识
DOI:10.1016/j.jcis.2023.08.043
摘要

The rapid scavenging of reactive oxygen species (ROS) by glutathione (GSH) and insufficient endogenous hydrogen peroxide (H2O2) in tumor cells are the major factors greatly restricting the efficacy of chemodynamic therapy (CDT). Herein, we developed a tumor microenvironment (TME)-responsive Cu-based metal-mesoporous organosilica nanoplatform integrating vitamin k3 (VK3), which could deplete GSH and specifically regenerate H2O2 for amplified CDT of cancer. Once the CuO@MON-PEG/VK3 nanoparticles entered into the tumor cells through enhanced permeability and retention (EPR) effect, the organosilicon shell and CuO core would be successively degraded upon the triggering of GSH and endo/lysosomal acidity. Subsequently, the enriched tetrasulfide bridges and released Cu2+ could consume GSH substantially, thus triggering Fenton-like reaction for CDT. Furthermore, the released VK3 could be catalyzed by the highly expressed quinone oxidoreductase-1 (NQO1) inside tumor cells to generate sufficient H2O2 through a “reversible” redox cycle, which in turn promoted Cu+-mediated Fenton-like reaction. Both in vitro and in vivo studies demonstrated that this nanoplatform could achieve synergistic CDT against tumor through synergistic cycling regeneration of ROS and dual GSH exhaustion with excellent biosafety. Our finding highlight the promising potential of CuO@MON-PEG/VK3 nanoplatform with multiple oxidative stress amplification for highly efficient tumor therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助葡萄小伊ovo采纳,获得10
2秒前
欢喜的代容完成签到,获得积分10
2秒前
ssx完成签到,获得积分10
4秒前
丫丫完成签到,获得积分10
4秒前
白白白完成签到 ,获得积分10
4秒前
与你无关发布了新的文献求助10
4秒前
4秒前
zydzydzyd完成签到,获得积分10
5秒前
yu完成签到,获得积分10
6秒前
勤劳元瑶完成签到,获得积分10
6秒前
loen完成签到,获得积分10
7秒前
7秒前
8秒前
FashionBoy应助安安采纳,获得30
8秒前
彭于晏应助康KKKate采纳,获得10
9秒前
9秒前
hhh完成签到 ,获得积分10
10秒前
10秒前
三毛完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
ccm应助薛娇采纳,获得10
12秒前
coco234完成签到,获得积分10
13秒前
ssx发布了新的文献求助10
14秒前
Bbsheep发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
积极钢笔完成签到,获得积分20
16秒前
16秒前
16秒前
与你无关完成签到,获得积分10
17秒前
17秒前
科研通AI6应助小东子采纳,获得10
18秒前
18秒前
19秒前
Tingting发布了新的文献求助10
20秒前
美满兔子发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486670
求助须知:如何正确求助?哪些是违规求助? 4586216
关于积分的说明 14408154
捐赠科研通 4516645
什么是DOI,文献DOI怎么找? 2474918
邀请新用户注册赠送积分活动 1460776
关于科研通互助平台的介绍 1433882