Hyper-parameter tuned deep learning approach for effective human monkeypox disease detection

猴痘 计算机科学 人类疾病 深度学习 人工智能 疾病 病毒学 计算生物学 生物 医学 牛痘 基因 遗传学 重组DNA 病理
作者
Neeraj Dahiya,Yogesh Kumar Sharma,Uma Rani,Shekjavid Hussain,Khan Vajid Nabilal,Anand Mohan,Nasratullah Nuristani
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:21
标识
DOI:10.1038/s41598-023-43236-1
摘要

Human monkeypox is a very unusual virus that can devastate society. Early identification and diagnosis are essential to treat and manage an illness effectively. Human monkeypox disease detection using deep learning models has attracted increasing attention recently. The virus that causes monkeypox may be passed to people, making it a zoonotic illness. The latest monkeypox epidemic has hit more than 40 nations. Computer-assisted approaches using Deep Learning techniques for automatically identifying skin lesions have shown to be a viable alternative in light of the fast proliferation and ever-growing problems of supplying PCR (Polymerase Chain Reaction) Testing in places with limited availability. In this research, we introduce a deep learning model for detecting human monkeypoxes that is accurate and resilient by tuning its hyper-parameters. We employed a mixture of convolutional neural networks and transfer learning strategies to extract characteristics from medical photos and properly identify them. We also used hyperparameter optimization strategies to fine-tune the Model and get the best possible results. This paper proposes a Yolov5 model-based method for differentiating between chickenpox and Monkeypox lesions on skin pictures. The Roboflow skin lesion picture dataset was subjected to three different hyperparameter tuning strategies: the SDG optimizer, the Bayesian optimizer, and Learning without Forgetting. The proposed Model had the highest classification accuracy (98.18%) when applied to photos of monkeypox skin lesions. Our findings show that the suggested Model surpasses the current best-in-class models and may be used in clinical settings for actual Human Monkeypox disease detection and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱笑凤凰完成签到,获得积分10
1秒前
2秒前
朱zz发布了新的文献求助10
2秒前
Jasper应助西木采纳,获得10
4秒前
科目三应助笑点低方盒采纳,获得10
5秒前
今后应助urkk采纳,获得10
5秒前
ikea1984发布了新的文献求助10
5秒前
番茄鱼完成签到 ,获得积分10
6秒前
7秒前
lianggga完成签到,获得积分10
7秒前
8秒前
Survivor发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
春鸮鸟完成签到 ,获得积分10
10秒前
10秒前
宁宁完成签到,获得积分10
11秒前
笑点低方盒完成签到,获得积分10
13秒前
不配.应助guozizi采纳,获得30
14秒前
宁宁发布了新的文献求助10
14秒前
15秒前
西木完成签到,获得积分10
15秒前
充电宝应助dtfly采纳,获得10
15秒前
潇湘雪月完成签到,获得积分10
16秒前
16秒前
CAOHOU应助ray采纳,获得10
16秒前
科研通AI6应助小景007采纳,获得10
18秒前
zhen发布了新的文献求助10
18秒前
19秒前
西木发布了新的文献求助10
19秒前
Duktig完成签到,获得积分10
19秒前
21秒前
21秒前
ikea1984完成签到,获得积分10
21秒前
Survivor完成签到,获得积分10
22秒前
诚心若完成签到,获得积分10
22秒前
22秒前
完美世界应助birdy采纳,获得10
23秒前
野生菜狗发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4273404
求助须知:如何正确求助?哪些是违规求助? 3802909
关于积分的说明 11917353
捐赠科研通 3449765
什么是DOI,文献DOI怎么找? 1891847
邀请新用户注册赠送积分活动 942647
科研通“疑难数据库(出版商)”最低求助积分说明 846428