Colorimetric sensor array for discriminating and determinating phenolic pollutants basing on different ratio of ligands in Cu/MOFs

污染物 化学 环境化学 传感器阵列 人类健康 基质(化学分析) 色谱法 有机化学 计算机科学 环境卫生 机器学习 医学
作者
Jing Zhu,Hongwei Jiang,Wenwu Wang
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:460: 132418-132418 被引量:17
标识
DOI:10.1016/j.jhazmat.2023.132418
摘要

The high toxicity and low biodegradability of the phenolic pollutants destroyed the balance of the environment and influenced human health seriously. Here, we developed a three-dimensional coloremetric sensor array for discriminating and determinating phenolic pollutants basing on the distinct Cu/nucleotides MOFs. Firstly, three laccase-mimic Cu/MOFs (Cu/AMP, Cu/CMP, and Cu/GMP) were obtained by regulating the molar ratio of Cu2+ and nucleotides. Then the Cu/MOFs as the recognition elements of the sensor array catalyzed the pollutants-4-AAP-H2O2 system, obtaining the colored benzoquinone products. Subsequently, the data array obtaining from the combined training matrix (3 Cu/MOFs × 6 pollutants × 5 replicates) was projected into a new dimensional space to obtain the 3D canonical scores, and classified into individual clusters by introducing LDA method. No overlap in their respective LDA plots for the six phenolic pollutants with different concentrations suggested the prominent discriminating performance of the sensor array. Furthermore, the sensor array exhibited high selectivity compared to the "lock-and-key" sensors even other active matrices coexisting in water samples. Importantly, the most influential discrimination factor was used to monitor the levels of the six targets, evidencing the potential application in assessing water pollution and maintaining human health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小滨发布了新的文献求助10
刚刚
科目三应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
4秒前
zwk发布了新的文献求助10
5秒前
wanci应助巫马采纳,获得10
6秒前
ding应助VDC采纳,获得10
6秒前
沧浪江完成签到,获得积分10
7秒前
Villanellel完成签到,获得积分10
8秒前
小二郎应助Charley采纳,获得10
8秒前
燕燕于飞发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
goufufu完成签到,获得积分10
11秒前
丘比特应助请qing采纳,获得10
12秒前
彭于晏应助shadow采纳,获得10
12秒前
hailiangzheng完成签到,获得积分10
12秒前
科研通AI5应助咖可乐采纳,获得10
13秒前
13秒前
科研通AI5应助Muncy采纳,获得10
14秒前
共享精神应助水枝采纳,获得10
15秒前
jgs发布了新的文献求助10
15秒前
泡沫发布了新的文献求助10
16秒前
所所应助子墨采纳,获得10
16秒前
16秒前
知还发布了新的文献求助10
16秒前
18秒前
18秒前
九儿完成签到 ,获得积分10
19秒前
20秒前
vv完成签到,获得积分10
20秒前
CipherSage应助lily采纳,获得10
20秒前
欧欧发布了新的文献求助10
21秒前
李健的粉丝团团长应助jgs采纳,获得10
21秒前
麦香鱼发布了新的文献求助20
21秒前
21秒前
zwk完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785657
求助须知:如何正确求助?哪些是违规求助? 3331079
关于积分的说明 10250021
捐赠科研通 3046482
什么是DOI,文献DOI怎么找? 1672111
邀请新用户注册赠送积分活动 800991
科研通“疑难数据库(出版商)”最低求助积分说明 759907