Online interpretable dynamic prediction models for postoperative delirium after cardiac surgery under cardiopulmonary bypass developed based on machine learning algorithms: A retrospective cohort study

谵妄 接收机工作特性 医学 心脏外科 机器学习 人工神经网络 队列 体外循环 推导 人工智能 深度学习 计算机科学 重症监护医学 内科学 动脉
作者
Xiuxiu Zhao,Junlin Li,Xianhai Xie,Zhaojing Fang,Yue Feng,Yi Zhong,Chen Chen,Kaizong Huang,Chun Ge,Hongwei Shi,Yanna Si,Jianjun Zou
出处
期刊:Journal of Psychosomatic Research [Elsevier BV]
卷期号:176: 111553-111553 被引量:5
标识
DOI:10.1016/j.jpsychores.2023.111553
摘要

Postoperative delirium (POD) is strongly associated with poor early and long-term prognosis in cardiac surgery patients with cardiopulmonary bypass (CPB). This study aimed to develop dynamic prediction models for POD after cardiac surgery under CPB using machine learning (ML) algorithms. From July 2021 to June 2022, clinical data were collected from patients undergoing cardiac surgery under CPB at Nanjing First Hospital. A dataset from the same center (October 2022 to November 2022) was also used for temporal external validation. We used ML and deep learning to build models in the training set, optimized parameters in the test set, and finally validated the best model in the validation set. The SHapley Additive exPlanations (SHAP) method was introduced to explain the best models. Of the 885 patients enrolled, 221 (25.0%) developed POD. 22 (22.0%) of 100 validation cohort patients developed POD. The preoperative and postoperative artificial neural network (ANN) models exhibited optimal performance. The validation results demonstrated satisfactory predictive performance of the ANN model, with area under the receiver operator characteristic curve (AUROC) values of 0.776 and 0.684 for the preoperative and postoperative models, respectively. Based on the ANN algorithm, we constructed dynamic, highly accurate, and interpretable web risk calculators for POD. We successfully developed online interpretable dynamic ANN models as clinical decision aids to identify patients at high risk of POD before and after cardiac surgery to facilitate early intervention or care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动的千柳完成签到,获得积分10
刚刚
5秒前
原子发布了新的文献求助10
8秒前
9秒前
osmanthus完成签到,获得积分10
10秒前
10秒前
张羊羔完成签到 ,获得积分10
17秒前
静一完成签到 ,获得积分0
17秒前
萧瑟处完成签到,获得积分10
21秒前
赘婿应助麻生采纳,获得10
21秒前
25秒前
安安放完成签到,获得积分10
26秒前
28秒前
zzz发布了新的文献求助10
29秒前
丘比特应助北北采纳,获得10
29秒前
32秒前
az发布了新的文献求助10
33秒前
34秒前
pluto应助Newky采纳,获得10
34秒前
科研通AI2S应助zommen采纳,获得30
35秒前
加油完成签到,获得积分10
37秒前
百里伟祺发布了新的文献求助10
39秒前
领导范儿应助xdl120318采纳,获得10
40秒前
麻生发布了新的文献求助10
41秒前
搜集达人应助黄可以采纳,获得10
44秒前
ZZ发布了新的文献求助10
46秒前
李爱国应助恰鸡肉的tiger采纳,获得10
49秒前
51秒前
科研通AI5应助十先生的猫采纳,获得10
51秒前
wanci应助亦雪采纳,获得10
51秒前
QiongBai520发布了新的文献求助10
52秒前
活力书包完成签到 ,获得积分10
57秒前
57秒前
藜颵发布了新的文献求助10
57秒前
王晴完成签到,获得积分10
57秒前
57秒前
111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778030
求助须知:如何正确求助?哪些是违规求助? 3323705
关于积分的说明 10215513
捐赠科研通 3038914
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339