亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Salient Object Detection With Dual-Branch Stepwise Feature Fusion and Edge Refinement

人工智能 模式识别(心理学) 增采样 编码器 卷积神经网络 计算机科学 融合机制 融合 计算机视觉 突出 变压器 特征提取 目标检测 图像(数学) 量子力学 电压 物理 哲学 语言学 脂质双层融合 操作系统
作者
Xiaogang Song,Fuqiang Guo,Lei Zhang,Xiaofeng Lu,Xinhong Hei
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2832-2844 被引量:7
标识
DOI:10.1109/tcsvt.2023.3312859
摘要

In recent years, Transformers have been gradually applied in salient object detection tasks with good results. However, the Transformer's global modeling capabilities can lead to the loss of local details that are important in salient object detection tasks. A feature extraction backbone based on a convolutional neural network (CNN) is good at extracting local detail features due to the gradual expansion of the receptive field but is limited by the size of the receptive field, resulting in an insufficient ability to extract global semantic features. Therefore, this paper combines the Transformer with a CNN and presents a dual-branch encoder to ensure that the features extracted contain rich global semantic information as well as local detail features. In addition, due to the different features extracted by the Transformer and CNN, noise may be introduced in the fusion of the two features, so different features need to be processed correspondingly during fusion. The fusion enhancement module (FEM) we propose fuses the features of the two branches step by step. A hybrid attention mechanism is used to carry out weighted fusion of different features. This progressive approach minimizes the differences between the features of the two branches so that the merged features retain the semantic and detail features extracted by the two branches to the greatest extent. Considering the loss of detailed information caused by repeated downsampling, we propose an edge refinement module (ERM) to address the need for accurate outline prediction. This module leverages salient features to obtain edge features and gradually refines the prediction results by incorporating these edge features. It makes full use of the connection between salient features and edge features and does not introduce additional edges to extract branches. Extensive experimental evaluations conducted on five benchmark tests demonstrate the superior performance of our method compared to other existing approaches. Code can be found at https://github.com/gfq1605694825/DSRNet-main .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
Dash发布了新的文献求助10
25秒前
Dash发布了新的文献求助10
37秒前
所所应助Dash采纳,获得10
47秒前
1分钟前
1分钟前
Dash发布了新的文献求助10
1分钟前
科研通AI5应助123采纳,获得10
1分钟前
1分钟前
科研通AI2S应助等待雁桃采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
老石完成签到 ,获得积分10
1分钟前
2分钟前
无风发布了新的文献求助10
2分钟前
2分钟前
2分钟前
X519664508完成签到,获得积分0
2分钟前
123发布了新的文献求助10
2分钟前
Dash发布了新的文献求助10
2分钟前
万能图书馆应助123采纳,获得10
2分钟前
Dash发布了新的文献求助10
2分钟前
无花果应助Dash采纳,获得10
2分钟前
3分钟前
Dash发布了新的文献求助10
3分钟前
Dash发布了新的文献求助10
3分钟前
松松完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
Dash发布了新的文献求助10
3分钟前
田様应助Dash采纳,获得10
4分钟前
4分钟前
Dash发布了新的文献求助10
4分钟前
Yini应助Benhnhk21采纳,获得10
4分钟前
星辰大海应助Dash采纳,获得10
4分钟前
科研通AI5应助Dash采纳,获得10
4分钟前
5分钟前
Dash发布了新的文献求助10
5分钟前
狂野的含烟完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541188
求助须知:如何正确求助?哪些是违规求助? 3974865
关于积分的说明 12310949
捐赠科研通 3642134
什么是DOI,文献DOI怎么找? 2005698
邀请新用户注册赠送积分活动 1041108
科研通“疑难数据库(出版商)”最低求助积分说明 930322