Superiority combination learning distributed particle swarm optimization for large-scale optimization

计算机科学 粒子群优化 可扩展性 多群优化 比例(比率) 数学优化 元启发式 人工智能 机器学习 数学 量子力学 数据库 物理
作者
Zijia Wang,Qiang Yang,Yuhui Zhang,Shuhong Chen,Yuan‐Gen Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:136: 110101-110101 被引量:16
标识
DOI:10.1016/j.asoc.2023.110101
摘要

Large-scale optimization problems (LSOPs) have become increasingly significant and challenging in the evolutionary computation (EC) community. This article proposes a superiority combination learning distributed particle swarm optimization (SCLDPSO) for LSOPs. In algorithm design, a master–slave multi-subpopulation distributed model is adopted, which can obtain the full communication and information exchange among different subpopulations, further achieving the diversity enhancement. Moreover, a superiority combination learning (SCL) strategy is proposed, where each worse particle in the poor-performance subpopulation randomly selects two well-performance subpopulations with better particles for learning. In the learning process, each well-performance subpopulation generates a learning particle by merging different dimensions of different particles, which can fully combine the superiorities of all the particles in the current well-performance subpopulation. The worse particle can significantly improve itself by learning these two superiority combination particles from the well-performance subpopulations, leading to a successful search. Experimental results show that SCLDPSO performs better than or at least comparable with other state-of-the-art large-scale optimization algorithms on both CEC2010 and CEC2013 large-scale optimization test suites, including the winner of the competition on large-scale optimization. Besides, the extended experiments with increasing dimensions to 2000 show the scalability of SCLDPSO. At last, an application in large-scale portfolio optimization problems further illustrates the applicability of SCLDPSO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MHR发布了新的文献求助10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
banana完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得30
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
ss完成签到,获得积分10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
直率的冰海发布了新的文献求助200
2秒前
2秒前
山山而川完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
玖若辰发布了新的文献求助10
5秒前
5秒前
共享精神应助苏杉杉采纳,获得10
5秒前
lily发布了新的文献求助10
5秒前
6秒前
科研通AI5应助不低头采纳,获得10
7秒前
jack发布了新的文献求助10
7秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804835
求助须知:如何正确求助?哪些是违规求助? 3349925
关于积分的说明 10346344
捐赠科研通 3065759
什么是DOI,文献DOI怎么找? 1683265
邀请新用户注册赠送积分活动 808800
科研通“疑难数据库(出版商)”最低求助积分说明 764915