量子位元
凝聚态物理
物理
自旋(空气动力学)
领域(数学)
硅
自旋工程
放松(心理学)
磁场
自旋等离子体光子学
量子力学
电子
自旋极化
量子
自旋霍尔效应
光电子学
心理学
社会心理学
数学
纯数学
热力学
作者
Amin Hosseinkhani,Guido Burkard
出处
期刊:Physical review
[American Physical Society]
日期:2022-08-18
卷期号:106 (7)
被引量:4
标识
DOI:10.1103/physrevb.106.075415
摘要
We develop the theory of single-electron silicon spin qubit relaxation in the presence of a magnetic field gradient. Such field gradients are routinely generated by on-chip micromagnets to allow for electrically controlled quantum gates on spin qubits. We build on a valley-dependent envelope function theory that enables the analysis of the electron wave function in a silicon quantum dot with an arbitrary roughness at the interface. We assume the presence of single-layer atomic steps at a Si/SiGe interface and study how the presence of a gradient field modifies the spin-mixing mechanisms. We show that our theoretical modeling can quantitatively reproduce results of experimental measurements of qubit relaxation in silicon in the presence of a micromagnet. We further study in detail how a field gradient can modify the EDSR Rabi frequency of a silicon spin qubit. While this strongly depends on the details of the interface roughness, interestingly, we find that adding a micromagnet on top of a spin qubit with an ideal interface can even reduce the EDSR frequency within some interval of the external magnetic field strength.
科研通智能强力驱动
Strongly Powered by AbleSci AI