有机太阳能电池
随机森林
梯度升压
接受者
Boosting(机器学习)
超参数
回归
试验装置
支持向量机
人工神经网络
光伏系统
计算机科学
化学
机器学习
生物系统
人工智能
数学
物理
统计
工程类
凝聚态物理
电气工程
生物
作者
Ming Li,Cai‐Rong Zhang,Meiling Zhang,Ji‐Jun Gong,Xiao‐Meng Liu,Yuhong Chen,Zi‐Jiang Liu,Youzhi Wu,Hongshan Chen
标识
DOI:10.1002/pssa.202400008
摘要
The selection of electron donors and nonfullerene acceptors (NFAs) in organic solar cells (OSCs) is crucial for improving photovoltaic performance. Machine learning (ML) has brought a breakthrough solution. Herein, 292 donor‐NFA pairs with experimental OSC parameters from the reported articles are collected. The ML descriptors include device processing parameters, molecular properties, and molecular structure. The five ML regression models, random forest (RF), extra tree regression, gradient boosting regression tree, adaptive boosting, and artificial neural network (ANN) are trained. GridSearchCV is used for hyperparameter optimization of ML regression models. The SHapley Additive exPlanation approach is employed to analyze descriptor importance. Among the trained five ML models, the RF model shows superior performance, achieving Pearson's correlation coefficient ( r ) of 0.81 on the test set. Based on the donors and NFAs in constructed dataset, the 9779 donor–NFA pairs for OSCs are generated by randomly combining donor and acceptor molecules. The trained RF model is utilized to predict the power conversion efficiency (PCE) of new donor–acceptor pairs for OSCs. The results indicate that the OSC composed of PBDB‐TF as donor and L8‐BO as acceptor can achieve the remarkable PCE of 17.9%.
科研通智能强力驱动
Strongly Powered by AbleSci AI