ChangeCLIP: Remote sensing change detection with multimodal vision-language representation learning

计算机科学 变更检测 人工智能 语义学(计算机科学) 代表(政治) 深度学习 编码(集合论) 解码方法 编码(内存) 集合(抽象数据类型) 政治 政治学 法学 程序设计语言 电信
作者
Sijun Dong,Libo Wang,Bo Du,Xiaoliang Meng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 53-69 被引量:95
标识
DOI:10.1016/j.isprsjprs.2024.01.004
摘要

Remote sensing change detection (RSCD), which aims to identify surface changes from bitemporal images, is significant for many applications, such as environmental protection and disaster monitoring. In the last decade, driven by the wave of artificial intelligence, many change detection methods based on deep learning emerged and have achieved essential breakthroughs. However, these methods pay more attention to visual representation learning while ignoring the potential of multimodal data. Recently, the foundation vision-language model, i.e. CLIP, has provided a new paradigm for multimodal AI, demonstrating impressive performance on downstream tasks. Following this trend, in this study, we introduce ChangeCLIP, a novel framework that leverages robust semantic information from image-text pairs, specifically tailored for Remote Sensing Change Detection (RSCD). Specifically, we reconstruct the original CLIP to extract bitemporal features and propose a novel differential features compensation module to capture the detailed semantic changes between them. Besides, we proposed a vision-language-driven decoder by combining the results of image-text encoding with the visual features of the decoding stage, thereby enhancing the image semantics. The proposed ChangeCLIP achieved state-of-the-art IoU on 5 well-known change detection datasets, LEVIR-CD (85.20%), LEVIR-CD+ (75.63%), WHUCD (90.15%), CDD (95.87%) and SYSU-CD (71.41%). The code and the pretrained models of ChangeCLIP will be publicly available on https://github.com/dyzy41/ChangeCLIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
共享精神应助cc采纳,获得10
1秒前
童童发布了新的文献求助10
2秒前
2秒前
科研通AI6应助秋水采纳,获得10
3秒前
桐桐应助xxw采纳,获得10
4秒前
852应助xxw采纳,获得10
4秒前
香蕉觅云应助xxw采纳,获得10
4秒前
4秒前
汉堡包应助xxw采纳,获得10
4秒前
vv完成签到 ,获得积分10
4秒前
包容的跳跳糖完成签到,获得积分10
4秒前
orixero应助xxw采纳,获得10
4秒前
NexusExplorer应助xxw采纳,获得10
4秒前
善学以致用应助xxw采纳,获得10
4秒前
香蕉觅云应助xxw采纳,获得10
4秒前
Akim应助xxw采纳,获得10
4秒前
斯文败类应助xxw采纳,获得10
4秒前
8秒前
星辰大海应助KEHUGE采纳,获得10
9秒前
Owen应助幽默尔蓝采纳,获得10
9秒前
爆米花应助xxw采纳,获得10
10秒前
无花果应助xxw采纳,获得10
10秒前
科研通AI2S应助流星噬月采纳,获得10
11秒前
11秒前
CTT完成签到,获得积分10
12秒前
有魅力哈密瓜完成签到,获得积分0
13秒前
李健的小迷弟应助曹志毅采纳,获得10
13秒前
完美甜瓜发布了新的文献求助10
13秒前
sakyadamo发布了新的文献求助10
13秒前
研友_VZG7GZ应助xxw采纳,获得10
16秒前
英俊的铭应助xxw采纳,获得10
16秒前
bkagyin应助xxw采纳,获得10
16秒前
FashionBoy应助xxw采纳,获得10
16秒前
科目三应助xxw采纳,获得10
16秒前
李爱国应助xxw采纳,获得10
16秒前
桐桐应助xxw采纳,获得10
16秒前
酷波er应助xxw采纳,获得10
16秒前
深情安青应助xxw采纳,获得10
16秒前
CodeCraft应助xxw采纳,获得10
16秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500750
求助须知:如何正确求助?哪些是违规求助? 4597260
关于积分的说明 14458077
捐赠科研通 4530495
什么是DOI,文献DOI怎么找? 2482801
邀请新用户注册赠送积分活动 1466554
关于科研通互助平台的介绍 1439203