清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Theoretical efficiency limit and realistic losses of indoor organic and perovskite photovoltaics [Invited]

光伏 光伏系统 材料科学 光电子学 钙钛矿(结构) 极限(数学) 量子效率 带隙 能量转换效率 光学 环境科学 物理 电气工程 化学 结晶学 数学 数学分析 工程类
作者
Xinlu Liu,Ruiyu Tian,Zedong Xiong,Yang Liu,Yinhua Zhou
出处
期刊:Chinese Optics Letters [Shanghai Institute of Optics and Fine Mechanics]
卷期号:21 (12): 120031-120031 被引量:10
标识
DOI:10.3788/col202321.120031
摘要

Indoor organic and perovskite photovoltaics (PVs) have been attracting great interest in recent years. The theoretical limit of indoor PVs has been calculated based on the detailed balance method developed by Shockley–Queisser. However, realistic losses of the organic and perovskite PVs under indoor illumination are to be understood for further efficiency improvement. In this work, the efficiency limit of indoor PVs is calculated to 55.33% under indoor illumination (2700 K, 1000 lux) when the bandgap (Eg) of the semiconductor is 1.77 eV. The efficiency limit was obtained on the basis of assuming 100% photovoltaic external quantum efficiency (EQEPV) when E ≥ Eg, there was no nonradiative recombination, and there were no resistance losses. In reality, the maximum EQEPV reported in the literature is 0.80–0.90. The proportion of radiative recombination in realistic devices is only 10-5–10-2, which causes the open-circuit voltage loss (ΔVloss) of 0.12–0.3 V. The fill factor (FF) of the indoor PVs is sensitive to the shunt resistance (Rsh). The realistic losses of EQEPV, nonradiative recombination, and resistance cause the large efficiency gap between the realistic values (excellent perovskite indoor PV, 32.4%; superior organic indoor PV, 30.2%) and the theoretical limit of 55.33%. In reality, it is feasible to reach the efficiency of 47.4% at 1.77 eV for organic and perovskite photovoltaics under indoor light (1000 lux, 2700 K) with VOC = 1.299 V, JSC = 125.33 µA/cm2, and FF = 0.903 when EQEPV = 0.9, EQEEL = 10-1, Rs = 0.5 Ω cm2, and Rsh = 104 kΩ cm2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
Zoe发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助20
15秒前
Zoe完成签到,获得积分10
21秒前
44秒前
52秒前
虚幻念寒完成签到 ,获得积分10
1分钟前
卢莹完成签到,获得积分10
1分钟前
木乙完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
脑洞疼应助Jonathan采纳,获得10
3分钟前
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
3分钟前
汪汪淬冰冰完成签到,获得积分10
3分钟前
SimonShaw完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
天玄发布了新的文献求助10
4分钟前
李健的小迷弟应助敏敏9813采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
宝宝爱洗脚完成签到,获得积分10
5分钟前
5分钟前
冷傲半邪完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605