FDUM-Net: An enhanced FPN and U-Net architecture for skin lesion segmentation

网(多面体) 分割 卷积神经网络 计算机科学 背景(考古学) 编码器 掷骰子 深度学习 Sørensen–骰子系数 人工智能 模式识别(心理学) 感兴趣区域 网络体系结构 图像分割 计算机视觉 数学 几何学 古生物学 计算机安全 生物 操作系统
作者
H. Sharen,Malathy Jawahar,L. Jani Anbarasi,Vinayakumar Ravi,Norah Saleh Alghamdi,Wael Suliman
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:91: 106037-106037 被引量:13
标识
DOI:10.1016/j.bspc.2024.106037
摘要

Early detection is essential for the successful removal of all malignant lesions from the body, and skin cancer is one of the most widespread cancers globally. In medical image analysis, identifying the diseased area or the region of interest (ROI) significantly relies on advanced network models. Segmenting skin lesions is a strenuous task due to the presence of varied lesion shapes, ambiguous edge borders, low contrast, and presences of artifacts and noises. Performing manual identification of ROI on a large-scale skin lesion assessment is challenging. This study proposes enhanced FPN and U-Net network models for supervised skin lesion segmentation. The study investigates eight Convolutional Neural Network architectures, including U-Net (classic), U-Net + MobileNet, U-Net + InceptionV3, U-Net + DenseNet121, FPN(classic), FPN + MobileNet, FPN + InceptionV3, and FPN + DenseNet121. The performance of these architectures is evaluated using three optimizers (RMSProp, Adam, and SGD) on the ISIC 2016 dataset. The evaluation metrics include accuracy, IoU, and Dice coefficients on the testing dataset. The experimental findings demonstrate that the FPN architecture with DenseNet121 as the backbone encoder and the U-Net architecture with MobileNet as the backbone encoder achieved the highest dice coefficient of 0.93, accuracy of 0.96, and IoU of 0.87. Our proposed solution for enhancing skin lesion segmentation is called FDUM-Net, which is a combination of enhanced FPN with DenseNet as encoder and U-Net with MobileNet designed to capture high-level information and context for more accurate results. These outcomes surpass the performance of previous research and can assist dermatologists in diagnosing skin cancer more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ricardo发布了新的文献求助10
2秒前
wyhhh完成签到,获得积分10
7秒前
9秒前
儒雅的天川完成签到 ,获得积分10
10秒前
QQ小罗完成签到,获得积分10
11秒前
11秒前
岚婘完成签到,获得积分10
12秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
13秒前
14秒前
14秒前
岚婘发布了新的文献求助10
15秒前
QQ小罗发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
研友_LMBAXn发布了新的文献求助10
18秒前
wwwwnr发布了新的文献求助10
19秒前
程艳完成签到 ,获得积分10
21秒前
柴桑青木应助夏艳青采纳,获得10
21秒前
21秒前
二分三分完成签到,获得积分10
22秒前
26秒前
陈寯发布了新的文献求助10
27秒前
Fn发布了新的文献求助10
29秒前
超级灰狼完成签到 ,获得积分10
29秒前
Serendipity应助kk采纳,获得20
31秒前
研友_LMBAXn发布了新的文献求助10
32秒前
季冬十五完成签到,获得积分10
33秒前
无花果应助lingyu采纳,获得10
34秒前
adgcxvjj应助科研通管家采纳,获得10
34秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
wanci应助科研通管家采纳,获得10
34秒前
葉涼应助科研通管家采纳,获得10
35秒前
adgcxvjj应助科研通管家采纳,获得10
35秒前
MchemG应助科研通管家采纳,获得10
35秒前
Meyako应助科研通管家采纳,获得10
35秒前
bkagyin应助今昔采纳,获得10
35秒前
35秒前
Hello应助科研通管家采纳,获得10
35秒前
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Social Epistemology: The Niches for Knowledge and Ignorance 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4251607
求助须知:如何正确求助?哪些是违规求助? 3784801
关于积分的说明 11879604
捐赠科研通 3436123
什么是DOI,文献DOI怎么找? 1885545
邀请新用户注册赠送积分活动 937232
科研通“疑难数据库(出版商)”最低求助积分说明 843028