已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Federated Learning for Computational Offloading and Resource Management of Vehicular Edge Computing in 6G-V2X Network

计算机科学 边缘计算 计算机网络 资源管理(计算) GSM演进的增强数据速率 移动边缘计算 边缘设备 分布式计算 嵌入式系统 服务器 云计算 操作系统 电信
作者
Mohammad Kamrul Hasan,Nusrat Jahan,Mohd Zakree Ahmad Nazri,Shayla Islam,Muhammad Attique Khan,Ahmed Ibrahim Alzahrani,Nasser Alalwan,Yunyoung Nam
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (1): 3827-3847 被引量:19
标识
DOI:10.1109/tce.2024.3357530
摘要

The Sixth Generation network (6G) can support autonomous driving along with various vehicular applications like Vehicular Edge Computing (VEC), a distributed computing architecture for connected autonomous vehicles. Computational offloading and resource management of Vehicular Edge Computing can help sort out some issues, such as high communication costs, privacy protection, an excessively long training process, etc., by proposing an efficient training model of the Federated Learning for computational offloading and resource management in a vehicular environment. Two research issues are highlighted in this paper. One problem is related to the current offloading system: the smart structure and operating system. Consistent access to cloud computing services, regardless of the installed operating system or used hardware, is still challenging. Another issue is related to security and privacy. Security and privacy are two important features that should be maintained in cloud data centers and data transmission during offloading and resource management. In this survey paper, a system is going to be proposed which will give a partial solution for these issues. The proposed solution, which is found while conducting this review, offers a system that can train a model and help update the edge devices' information. The entire edge cloud system can provide updated information for edge devices and can solve the difficulties of getting some key information necessary for model-related optimization. This also can enhance the effectiveness of the frameworks of the 6G-V2X network for communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Xiaoxiao完成签到,获得积分0
12秒前
丘比特应助鳗鱼皮卡丘采纳,获得10
12秒前
丁青发布了新的文献求助10
15秒前
戕小天的鸢尾花完成签到,获得积分10
16秒前
春辞完成签到,获得积分10
16秒前
小程同学完成签到 ,获得积分10
16秒前
Wei完成签到 ,获得积分10
17秒前
17秒前
17秒前
Hqing完成签到 ,获得积分10
18秒前
叶叶叶完成签到,获得积分10
20秒前
20秒前
22秒前
wzh发布了新的文献求助10
23秒前
小号完成签到,获得积分10
28秒前
msn00完成签到,获得积分10
30秒前
huanhuan完成签到 ,获得积分10
30秒前
暮雪残梅完成签到 ,获得积分10
32秒前
磊少完成签到 ,获得积分10
32秒前
SciGPT应助阿瓜采纳,获得10
35秒前
AprilLeung完成签到 ,获得积分10
36秒前
Tender完成签到,获得积分10
38秒前
充电宝应助aldd采纳,获得10
40秒前
斯寜应助科研通管家采纳,获得10
43秒前
大模型应助科研通管家采纳,获得10
43秒前
斯寜应助科研通管家采纳,获得10
43秒前
桐桐应助科研通管家采纳,获得10
43秒前
SciGPT应助科研通管家采纳,获得10
43秒前
852应助科研通管家采纳,获得10
43秒前
43秒前
安德完成签到,获得积分20
44秒前
源缘完成签到 ,获得积分10
46秒前
科研通AI5应助健忘幻儿采纳,获得10
48秒前
阿瓜发布了新的文献求助10
48秒前
49秒前
脑洞疼应助鳗鱼鞋垫采纳,获得10
51秒前
52秒前
53秒前
PPP完成签到,获得积分10
54秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800867
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329161
捐赠科研通 3062813
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807442
科研通“疑难数据库(出版商)”最低求助积分说明 763702