不变(物理)
转化(遗传学)
雷达
遥感
点云
航程(航空)
云计算
计算机科学
气象学
地质学
地理
人工智能
物理
航空航天工程
电信
工程类
操作系统
化学
基因
生物化学
数学物理
作者
Girish Tiwari,Shalabh Gupta
出处
期刊:IEEE sensors letters
[Institute of Electrical and Electronics Engineers]
日期:2023-12-06
卷期号:8 (1): 1-4
标识
DOI:10.1109/lsens.2023.3336793
摘要
This letter presents a 2-D point cloud data transformation technique to realize a range–angle invariant physical activities classification system using a single mmwave radar and deep convolutional neural network. The proposed 2-D point cloud transformer module applies normalization and translation techniques on point cloud data. This module compensates the range and angle variations in data due to position change of the user and helps to achieve user position invariant classifier or single angle classifier, which can accurately classify activities at multiple positions (having range and angular variations) based on training data from a single position. The proposed transformation technique eliminates the requirement of additional data collection and retraining the classifier. We present experimental results on a real-world dataset to validate the efficacy of the proposed technique.
科研通智能强力驱动
Strongly Powered by AbleSci AI