A hybrid deep learning approach to improve real-time effluent quality prediction in wastewater treatment plant

流出物 前馈 污水处理 计算机科学 人工神经网络 人工智能 水质 深度学习 卷积神经网络 废水 前馈神经网络 机器学习 环境工程 环境科学 工程类 控制工程 生态学 生物
作者
Yifan Xie,Y. Chen,Qing Wei,Hailong Yin
出处
期刊:Water Research [Elsevier BV]
卷期号:250: 121092-121092 被引量:25
标识
DOI:10.1016/j.watres.2023.121092
摘要

Wastewater treatment plant (WWTP) operation is usually intricate due to large variations in influent characteristics and nonlinear sewage treatment processes. Effective modeling of WWTP effluent water quality can provide valuable decision-making support to facilitate their operations and management. In this study, we developed a novel hybrid deep learning model by combining the temporal convolutional network (TCN) model with the long short-term memory (LSTM) network model to improve the simulation of hourly total nitrogen (TN) concentration in WWTP effluent. The developed model was tested in a WWTP in Jiangsu Province, China, where the prediction results of the hybrid TCN-LSTM model were compared with those of single deep learning models (TCN and LSTM) and traditional machine learning model (feedforward neural network, FFNN). The hybrid TCN-LSTM model could achieve 33.1 % higher accuracy as compared to the single TCN or LSTM model, and its performance could improve by 63.6 % comparing to the traditional FFNN model. The developed hybrid model also exhibited a higher power prediction of WWTP effluent TN for the next multiple time steps within eight hours, as compared to the standalone TCN, LSTM, and FFNN models. Finally, employing model interpretation approach of Shapley additive explanation to identify the key parameters influencing the behavior of WWTP effluent water quality, it was found that removing variables that did not contribute to the model output could further improve modeling efficiency while optimizing monitoring and management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木虫启航完成签到,获得积分10
1秒前
xiying完成签到 ,获得积分10
2秒前
小全发布了新的文献求助30
2秒前
太叔半雪完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
6秒前
打打应助CYY采纳,获得10
7秒前
MinQi发布了新的文献求助30
8秒前
丘比特应助翊然甜周采纳,获得10
8秒前
zho发布了新的文献求助10
9秒前
HJJHJH发布了新的文献求助20
10秒前
赵赵赵发布了新的文献求助10
11秒前
12秒前
赘婿应助赵赵赵采纳,获得10
14秒前
14秒前
开心的桔子完成签到 ,获得积分10
15秒前
领导范儿应助闾丘博超采纳,获得10
15秒前
16秒前
加菲丰丰应助HJJHJH采纳,获得20
16秒前
狡猾肥鲶鱼完成签到,获得积分10
16秒前
娜娜发布了新的文献求助10
19秒前
20秒前
徐zhipei发布了新的文献求助10
21秒前
21秒前
21秒前
liujie发布了新的文献求助10
23秒前
24秒前
24秒前
丘比特应助strug783采纳,获得10
24秒前
CipherSage应助strug783采纳,获得10
24秒前
orixero应助strug783采纳,获得10
24秒前
ding应助strug783采纳,获得10
24秒前
SciGPT应助strug783采纳,获得10
24秒前
传奇3应助strug783采纳,获得10
24秒前
李健的小迷弟应助strug783采纳,获得30
24秒前
SciGPT应助strug783采纳,获得10
24秒前
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780330
求助须知:如何正确求助?哪些是违规求助? 3325604
关于积分的说明 10223724
捐赠科研通 3040799
什么是DOI,文献DOI怎么找? 1669004
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648