Deciphering the role of PGRMC2 in the human endometrium during the menstrual cycle and in vitro decidualization using an in vitro approach

蜕膜化 子宫内膜 月经周期 间质细胞 孕酮受体 蜕膜 男科 转录组 生物 细胞生物学 医学 怀孕 内科学 基因表达 内分泌学 癌症研究 基因 雌激素受体 胎盘 激素 胎儿 遗传学 癌症 乳腺癌
作者
Yassmin Medina-Laver,Roberto González-Martín,Pedro de Castro,Indra Díaz-Hernández,Pilar Alamá,Alicia Quiñonero,Andrea Palomar,Francisco Domı́nguez
出处
期刊:Human Reproduction [Oxford University Press]
标识
DOI:10.1093/humrep/deae044
摘要

What is the human endometrial non-classical progesterone receptor (PGR) membrane component 2 (PGRMC2) expression pattern throughout the menstrual cycle and what role does it play during decidualization?Endometrial PGRMC2 expression fluctuates during the human menstrual cycle and is abundantly expressed in human endometrial stromal cells (hEnSCs) during in vitro decidualization, process where PGRMC2 is involved in embryo implantation-related pathways.The endometrial response to progesterone is mediated by the classical and non-classical PGRs. We previously demonstrated that PGR membrane component 1 (PGRMC1) is critical for endometrial function, embryo implantation, and future placentation, however, the role(s) of PGRMC2, which is structurally similar to PGRMC1, have not been studied in the human endometrium.This prospective study comprehensively evaluated the endometrial expression of PGRMC2 throughout the human menstrual cycle and during in vitro decidualization of hEnSCs (isolated from 77 endometrial biopsies that were collected from 66 oocyte donors), using immunohistochemistry, RT-qPCR, western blot, transcriptomic, and proteomic analyses. In addition, functional analysis was carried out to validate the implication of PGRMC2 in hEnSCs during embryo invasion using an in vitro outgrowth model.In vitro decidualization of hEnSCs was induced using co-treatment with cAMP and medroxyprogesterone 17-acetate progestin, and evaluated by measuring prolactin by ELISA and F-actin immunostaining. RT-qPCR was employed to compare expression with other PGRs. To reveal the function of PGRMC2 during the decidualization process, we specifically knocked down PGRMC2 with siRNAs and performed RNA-seq and quantitative proteomics techniques (SWATH-MS). The common differentially expressed genes (DEGs) and proteins (DEPs) were considered for downstream functional enrichment analysis. Finally, to verify its implication in the trophoblast invasion, an outgrowth model was carried out where hEnSCs with silenced PGRMC2 were co-cultured with human trophoblastic spheroids (JEG-3) following in vitro decidualization.In contrast to PGRMC1 and classical PGRs, endometrial PGRMC2 gene expression was significantly lower during the late- versus mid-secretory phase (P < 0.05). Accordingly, the elevated PGRMC2 protein abundance observed in the endometrial epithelial glands throughout the menstrual cycle dropped in the late secretory phase, when abundance decreased in all endometrial compartments. Nevertheless, PGRMC2 protein increased during the mid-secretory phase in stromal and glandular cells, and PGRMC2 mRNA (P < 0.0001) and protein (P < 0.001) levels were significantly enhanced in the membranes/organelles of decidualized hEnSCs, compared to non-decidualized hEnSCs. Notably, PGRMC1 and PGRMC2 mRNA were significantly more abundant than classical PGRs throughout menstrual cycle phases and in decidualized and non-decidualized hEnSCs (P < 0.05). RNA-seq and proteomics data revealed 4687 DEGs and 28 DEPs, respectively, in decidualized hEnSCs after PGRMC2 silencing. While functional enrichment analysis showed that the 2420 upregulated genes were mainly associated with endoplasmic reticulum function, vesicular transport, morphogenesis, angiogenesis, cell migration, and cell adhesion, the 2267 downregulated genes were associated with aerobic respiration and protein biosynthesis. The protein enrichment analysis showed that 4 upregulated and 24 downregulated proteins were related to aerobic respiration, cellular response, metabolism, localization of endoplasmic reticulum proteins, and ribonucleoside biosynthesis routes. Finally, PGRMC2 knockdown significantly compromised the ability of the decidualized hEnSCs to support trophoblast expansion in an outgrowth model (P < 0.05).Transcriptomic data are available via NCBI's Gene Expression Omnibus (GEO) under GEO Series accession number GSE251843 and proteomic data via ProteomeXchange with identifier PXD048494.The functional analyses were limited by the discrete number of human endometrial biopsies. A larger sample size is required to further investigate the potential role(s) of PGRMC2 during embryo implantation and maintenance of pregnancy. Further, the results obtained in the present work should be taken with caution, as the use of a pure primary endometrial stromal population differentiated in vitro does not fully represent the heterogeneity of the endometrium in vivo, nor the paracrine communications occurring between the distinct endometrial cell types.The repression of endometrial PGRMC2 during the late- versus mid-secretory phase, together with its overexpression during decidualization and multiple implications with embryo implantation not only highlighted the unknown roles of PGRMC2 in female reproduction but also the potential to exploit PGRMC2 signaling pathways to improve assisted reproduction treatments in the future.This research was funded by Instituto de Salud Carlos III (ISCIII) granted to F.D. (PI20/00405 and PI23/00860), co-funded by the European Union. Y.M.-L. was supported by a predoctoral research grant from Generalitat Valenciana (ACIF/2019/262). R.G.-M. was supported by Generalitat Valenciana (CIAPOT/2022/15). P.d.C. was supported by a predoctoral grant for training in research into health (PFIS FI20/00086) from the Instituto de Salud Carlos III. I.D.-H. was supported by the Spanish Ministry of Science, Innovation and Universities (FPU18/01550). A.P. was supported by the Instituto de Salud Carlos III (PFIS FI18/00009). This research was also supported by IVI Foundation-RMA Global (1911-FIVI-103-FD). The authors declare no conflict of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好沛萍发布了新的文献求助10
刚刚
韭菜盒子发布了新的文献求助10
4秒前
自来也完成签到,获得积分10
5秒前
乒坛巨人完成签到 ,获得积分10
6秒前
8秒前
大模型应助科研小菜采纳,获得10
10秒前
棒棒完成签到 ,获得积分10
10秒前
热心丹南发布了新的文献求助10
12秒前
SwapExisting完成签到 ,获得积分10
15秒前
17秒前
Zo完成签到,获得积分10
17秒前
YZ完成签到 ,获得积分10
22秒前
青衫完成签到 ,获得积分10
22秒前
科研小菜发布了新的文献求助10
23秒前
炙热萝完成签到,获得积分10
24秒前
MJY完成签到,获得积分10
27秒前
三人水明完成签到 ,获得积分10
28秒前
隐形曼青应助热心丹南采纳,获得10
28秒前
皇甫晓槐完成签到 ,获得积分10
29秒前
blusky完成签到,获得积分10
31秒前
Jennifer完成签到 ,获得积分10
31秒前
花开四海完成签到 ,获得积分10
33秒前
Bink完成签到 ,获得积分10
34秒前
修仙完成签到,获得积分10
35秒前
宇文青寒完成签到,获得积分10
38秒前
尤里有气发布了新的文献求助10
42秒前
无花果应助科研通管家采纳,获得10
43秒前
chenyan完成签到,获得积分10
44秒前
落后访风完成签到,获得积分10
53秒前
美丽蘑菇完成签到 ,获得积分10
54秒前
56秒前
guojingjing发布了新的文献求助10
59秒前
yiming完成签到,获得积分10
1分钟前
韭菜盒子完成签到,获得积分20
1分钟前
共享精神应助令狐秋采纳,获得10
1分钟前
今后应助美好沛萍采纳,获得10
1分钟前
yuan完成签到,获得积分10
1分钟前
Akim应助yiming采纳,获得10
1分钟前
raiychemj完成签到,获得积分10
1分钟前
阳光he完成签到,获得积分10
1分钟前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2407421
求助须知:如何正确求助?哪些是违规求助? 2104249
关于积分的说明 5311017
捐赠科研通 1831822
什么是DOI,文献DOI怎么找? 912750
版权声明 560691
科研通“疑难数据库(出版商)”最低求助积分说明 488011