亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward digital twins for high-performance manufacturing: Tool wear monitoring in high-speed milling of thin-walled parts using domain knowledge

机械加工 刀具磨损 时域 频域 刚度 刀具 计算机科学 机床 特征(语言学) 领域(数学分析) 侧面 力矩(物理) 振动 机械工程 工程类 结构工程 声学 计算机视觉 物理 数学分析 哲学 社会学 经典力学 语言学 数学 人类学
作者
Runqiong Wang,Qinghua Song,Yezhen Peng,Jing Qin,Zhanqiang Liu,Zhaojun Liu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:88: 102723-102723 被引量:16
标识
DOI:10.1016/j.rcim.2024.102723
摘要

The condition of cutting tool in the high-performance machining of aerospace Ti6Al4V thin-walled parts is a key factor in determining service performance and productivity. However, the complex dynamic characteristics of thin-walled cutting systems lead to a different evolution of the machining signals than in conventional machining, which drastically reduces the performance of the extracted features. This results in the faint features that are exclusive to the machining of thin-walled components. To establish a data-driven mapping between the faint signal features and tool wear conditions in thin-walled parts cutting, this study proposes a domain-knowledge based-tool wear monitoring method, which efficiently addresses the effects of random perturbations caused by the weak stiffness of workpieces. Firstly, to eliminate the influence of mutated vibration, a quantitative characterization model for the evolution of cutting data is proposed by non-linearly superimposing multi-dimensional behavioral indicators of non-normally distributed feature vectors. Secondly, the wear law of milling tools is determined from the wear mechanism on the rake and flank faces, which avoids the effect of human factors on the measurement of data labels. Based on this, the lightweight tool wear recognition model is then developed through the filtered features with domain knowledge. According to the results, the performance of cutting force in the x-direction and the axial bending moment are more than 6 % ahead of other channels. Time domain features and time-frequency domain features are advantageous in monitoring tool status through regression and classification, respectively. Experiments demonstrate that the proposed method improves the accuracy by 7 % while reducing the number of model parameters by more than 5.65 times. This may provide an efficient way to build digital twins for high-performance machining. Moreover, a dataset containing the machining data of multiple milling tools is provided, which lays the foundation for forward research on tool condition monitoring and anomaly detection in high-performance cutting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
yqb发布了新的文献求助10
19秒前
科目三应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得100
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
徐凤年完成签到,获得积分10
22秒前
24秒前
DYL完成签到,获得积分10
33秒前
sean118完成签到 ,获得积分10
33秒前
35秒前
秀xiu完成签到,获得积分10
36秒前
小付发布了新的文献求助10
40秒前
48秒前
58秒前
1分钟前
1分钟前
月满西楼发布了新的文献求助10
1分钟前
杰尼龟发布了新的文献求助10
1分钟前
1分钟前
月满西楼完成签到,获得积分10
1分钟前
不了了发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yqb发布了新的文献求助10
1分钟前
Hillson完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
爱撒娇的沛凝完成签到 ,获得积分10
2分钟前
咕咕完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
Sunny完成签到 ,获得积分10
3分钟前
4分钟前
光亮语梦完成签到 ,获得积分10
4分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343957
关于积分的说明 10318137
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679619
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763314