亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward digital twins for high-performance manufacturing: Tool wear monitoring in high-speed milling of thin-walled parts using domain knowledge

机械加工 刀具磨损 时域 频域 刚度 刀具 计算机科学 机床 特征(语言学) 领域(数学分析) 侧面 力矩(物理) 振动 机械工程 工程类 结构工程 声学 计算机视觉 物理 数学分析 哲学 社会学 经典力学 语言学 数学 人类学
作者
Runqiong Wang,Qinghua Song,Yezhen Peng,Jing Qin,Zhanqiang Liu,Zhaojun Liu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:88: 102723-102723 被引量:35
标识
DOI:10.1016/j.rcim.2024.102723
摘要

The condition of cutting tool in the high-performance machining of aerospace Ti6Al4V thin-walled parts is a key factor in determining service performance and productivity. However, the complex dynamic characteristics of thin-walled cutting systems lead to a different evolution of the machining signals than in conventional machining, which drastically reduces the performance of the extracted features. This results in the faint features that are exclusive to the machining of thin-walled components. To establish a data-driven mapping between the faint signal features and tool wear conditions in thin-walled parts cutting, this study proposes a domain-knowledge based-tool wear monitoring method, which efficiently addresses the effects of random perturbations caused by the weak stiffness of workpieces. Firstly, to eliminate the influence of mutated vibration, a quantitative characterization model for the evolution of cutting data is proposed by non-linearly superimposing multi-dimensional behavioral indicators of non-normally distributed feature vectors. Secondly, the wear law of milling tools is determined from the wear mechanism on the rake and flank faces, which avoids the effect of human factors on the measurement of data labels. Based on this, the lightweight tool wear recognition model is then developed through the filtered features with domain knowledge. According to the results, the performance of cutting force in the x-direction and the axial bending moment are more than 6 % ahead of other channels. Time domain features and time-frequency domain features are advantageous in monitoring tool status through regression and classification, respectively. Experiments demonstrate that the proposed method improves the accuracy by 7 % while reducing the number of model parameters by more than 5.65 times. This may provide an efficient way to build digital twins for high-performance machining. Moreover, a dataset containing the machining data of multiple milling tools is provided, which lays the foundation for forward research on tool condition monitoring and anomaly detection in high-performance cutting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
20秒前
在水一方应助鱿鱼起司采纳,获得10
26秒前
充电宝应助yyh采纳,获得10
33秒前
44秒前
45秒前
培培完成签到 ,获得积分10
46秒前
yyh发布了新的文献求助10
49秒前
聪明的黑猫完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
早日发文章完成签到,获得积分10
1分钟前
1分钟前
顏泰楊完成签到,获得积分10
2分钟前
2分钟前
Tales完成签到 ,获得积分10
2分钟前
OhHH完成签到 ,获得积分10
2分钟前
2分钟前
不萌不zs发布了新的文献求助10
2分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
fairy完成签到 ,获得积分10
4分钟前
4分钟前
在水一方应助单纯的映真采纳,获得10
4分钟前
脑洞疼应助研友_R2D2采纳,获得10
4分钟前
4分钟前
欣欣完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
研友_R2D2发布了新的文献求助10
5分钟前
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
VDC应助科研通管家采纳,获得30
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389068
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472848
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553