已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hybrid Ensemble Deep Learning Approach for Early Prediction of Battery Remaining Useful Life

计算机科学 人工智能 软件部署 深度学习 电池(电) 电池容量 机器学习 集成学习 试验装置 一般化 领域知识 功率(物理) 操作系统 物理 数学分析 量子力学 数学
作者
Qing Xu,Min Wu,Edwin Khoo,Zhenghua Chen,Xiaoli Li
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 177-187 被引量:60
标识
DOI:10.1109/jas.2023.123024
摘要

Accurate estimation of the remaining useful life (RUL) of lithium-ion batteries is critical for their large-scale deployment as energy storage devices in electric vehicles and stationary storage. A fundamental understanding of the factors affecting RUL is crucial for accelerating battery technology development. However, it is very challenging to predict RUL accurately because of complex degradation mechanisms occurring within the batteries, as well as dynamic operating conditions in practical applications. Moreover, due to insignificant capacity degradation in early stages, early prediction of battery life with early cycle data can be more difficult. In this paper, we propose a hybrid deep learning model for early prediction of battery RUL. The proposed method can effectively combine handcrafted features with domain knowledge and latent features learned by deep networks to boost the performance of RUL early prediction. We also design a non-linear correlation-based method to select effective domain knowledge-based features. Moreover, a novel snapshot ensemble learning strategy is proposed to further enhance model generalization ability without increasing any additional training cost. Our experimental results show that the proposed method not only outperforms other approaches in the primary test set having a similar distribution as the training set, but also generalizes well to the secondary test set having a clearly different distribution with the training set. The PyTorch implementation of our proposed approach is available at https://github.com/batteryrullbattery_rul_early_prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
林十三发布了新的文献求助10
1秒前
3秒前
眼睛大的怀曼完成签到,获得积分10
3秒前
风起枫落发布了新的文献求助10
3秒前
深情安青应助尽舜尧采纳,获得10
6秒前
7秒前
酷炫依凝完成签到,获得积分10
7秒前
忧心的笑南应助sunnyqqz采纳,获得30
7秒前
包容的雅青完成签到,获得积分10
9秒前
顾矜应助ymxlcfc采纳,获得10
9秒前
长江完成签到 ,获得积分10
11秒前
qiu发布了新的文献求助10
12秒前
幸运星辰完成签到 ,获得积分10
12秒前
田様应助激动的访文采纳,获得10
18秒前
阔达岂愈发布了新的文献求助10
18秒前
一路硕博关注了科研通微信公众号
19秒前
ming完成签到,获得积分10
20秒前
26秒前
小鸣完成签到 ,获得积分10
26秒前
28秒前
ccm应助顺利紫山采纳,获得10
29秒前
电容器关注了科研通微信公众号
30秒前
yaayi发布了新的文献求助10
30秒前
Akim应助不知采纳,获得10
30秒前
Da完成签到,获得积分10
32秒前
完美世界应助nanjiren采纳,获得10
32秒前
35秒前
程老板发布了新的文献求助10
35秒前
35秒前
39秒前
十斤菠菜发布了新的文献求助10
39秒前
39秒前
suzhenyue应助江南最长情采纳,获得10
40秒前
罗健发布了新的文献求助10
41秒前
zjkzh完成签到 ,获得积分10
41秒前
柏林寒冬应助高高初柔采纳,获得10
41秒前
积极从蕾应助cosy采纳,获得10
42秒前
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4161188
求助须知:如何正确求助?哪些是违规求助? 3696760
关于积分的说明 11673978
捐赠科研通 3388255
什么是DOI,文献DOI怎么找? 1857879
邀请新用户注册赠送积分活动 918807
科研通“疑难数据库(出版商)”最低求助积分说明 831691