Growth Optimizer: A powerful metaheuristic algorithm for solving continuous and discrete global optimization problems

元启发式 计算机科学 数学优化 算法 威尔科克森符号秩检验 人工智能 局部最优 水准点(测量) 机器学习 数学 曼惠特尼U检验 大地测量学 统计 地理
作者
Qingke Zhang,Hao Gao,Zhi‐Hui Zhan,Junqing Li,Huaxiang Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:261: 110206-110206 被引量:117
标识
DOI:10.1016/j.knosys.2022.110206
摘要

In this paper, a novel and powerful metaheuristic optimizer, named the growth optimizer (GO), is proposed. Its main design inspiration originates from the learning and reflection mechanisms of individuals in their growth processes in society. Learning is the process of individuals growing up by acquiring knowledge from the outside world. Reflection is the process of checking the individual’s own deficiencies and adjusting the individual’s learning strategies to help the individual’s growth. This work simulates this growth behavior mathematically and benchmarks the proposed algorithm on a total of 30 international test functions of the 2017 IEEE Congress on Evolutionary Computation real-parameter boundary constraint benchmark (CEC 2017 test suite). A total of 50 state-of-the-art metaheuristic algorithms participated in the comparison process. The results of the convergence accuracy comparison and the two nonparametric statistics based on the Friedman test and the Wilcoxon signed-rank test showed that GO provides competitive results compared to the 50 state-of-the-art metaheuristic algorithms tested. In addition, to verify that GO has the ability to solve different real-world optimization problems, GO was applied to two different types of real-world optimization problems: the multiple sequence alignment (MSA) problem based on the hidden Markov model (HMM) and the multithresholding image segmentation problem based on Kapur’s entropy method. GO provided more promising results than other metaheuristic techniques, especially in terms of solution quality and avoidance of local optima. The source code of the GO algorithm is publicly available at https://github.com/tsingke/Growth-Optimizer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zoey完成签到,获得积分20
2秒前
3秒前
852应助高大毛衣采纳,获得10
3秒前
5秒前
zoey发布了新的文献求助30
6秒前
上官若男应助聪慧的正豪采纳,获得10
7秒前
LW完成签到,获得积分10
7秒前
7秒前
逃跑计划完成签到,获得积分10
9秒前
10秒前
烟花应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
13秒前
PSYxx完成签到,获得积分20
13秒前
CipherSage应助咸鱼在挖宝采纳,获得10
13秒前
14秒前
小许要顺利毕业完成签到,获得积分10
14秒前
15秒前
狂野的驳完成签到 ,获得积分10
16秒前
16秒前
点点滴滴发布了新的文献求助10
18秒前
SciGPT应助欣慰的水壶采纳,获得30
18秒前
Camellia发布了新的文献求助10
19秒前
19秒前
19秒前
无情凡桃发布了新的文献求助10
19秒前
21秒前
21秒前
科研通AI5应助lizhiqian2024采纳,获得10
22秒前
点点滴滴完成签到,获得积分20
23秒前
23秒前
厚礼蟹发布了新的文献求助10
23秒前
香蕉觅云应助魔笛的云宝采纳,获得10
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784436
求助须知:如何正确求助?哪些是违规求助? 3329565
关于积分的说明 10242565
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671494
邀请新用户注册赠送积分活动 800371
科研通“疑难数据库(出版商)”最低求助积分说明 759391