One Loss for Quantization: Deep Hashing with Discrete Wasserstein Distributional Matching

量化(信号处理) 散列函数 矢量量化 计算机科学 二进制代码 算法 二进制数 理论计算机科学 人工智能 模式识别(心理学) 数学 计算机安全 算术
作者
Khoa D. Doan,Peng Yang,Ping Li
标识
DOI:10.1109/cvpr52688.2022.00923
摘要

Image hashing is a principled approximate nearest neighbor approach to find similar items to a query in a large collection of images. Hashing aims to learn a binary-output function that maps an image to a binary vector. For optimal retrieval performance, producing balanced hash codes with low-quantization error to bridge the gap between the learning stage's continuous relaxation and the inference stage's discrete quantization is important. However, in the existing deep supervised hashing methods, coding balance and low-quantization error are difficult to achieve and involve several losses. We argue that this is because the existing quantization approaches in these methods are heuristically constructed and not effective to achieve these objectives. This paper considers an alternative approach to learning the quantization constraints. The task of learning balanced codes with low quantization error is re-formulated as matching the learned distribution of the continuous codes to a pre-defined discrete, uniform distribution. This is equivalent to minimizing the distance between two distributions. We then propose a computationally efficient distributional distance by leveraging the discrete property of the hash functions. This distributional distance is a valid distance and enjoys lower time and sample complexities. The proposed single-loss quantization objective can be integrated into any existing supervised hashing method to improve code balance and quantization error. Experiments confirm that the proposed approach substantially improves the performance of several representative hashing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助初心采纳,获得10
刚刚
chang发布了新的文献求助10
2秒前
香蕉觅云应助yangyilin采纳,获得10
3秒前
4秒前
4秒前
5秒前
Theprisoners举报单纯季节求助涉嫌违规
7秒前
7秒前
Ava应助Sam十九采纳,获得10
8秒前
左山又海发布了新的文献求助10
8秒前
Squirrel发布了新的文献求助10
8秒前
NexusExplorer应助zm采纳,获得10
9秒前
Yolo应助xx采纳,获得10
9秒前
12秒前
UsihaGuwalgiya完成签到,获得积分20
13秒前
今者当歌完成签到,获得积分10
13秒前
13秒前
孙燕应助温暖的以旋采纳,获得10
14秒前
eva发布了新的文献求助10
15秒前
情怀应助ccchen采纳,获得10
17秒前
芙芙吃饱饱完成签到,获得积分10
17秒前
19秒前
只要平凡发布了新的文献求助10
19秒前
Sam十九发布了新的文献求助10
20秒前
小蘑菇应助杨杨杨采纳,获得10
20秒前
UsihaGuwalgiya发布了新的文献求助100
22秒前
23秒前
江梦松完成签到,获得积分10
26秒前
28秒前
骅骝关注了科研通微信公众号
28秒前
笑笑发布了新的文献求助10
28秒前
29秒前
失眠酸奶发布了新的文献求助10
29秒前
小杨发布了新的文献求助10
31秒前
勤恳立轩完成签到,获得积分10
31秒前
Lucas应助韵寒采纳,获得10
33秒前
34秒前
35秒前
eva完成签到,获得积分20
36秒前
早睡早起发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712