亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microscopic Modeling and Optimization of NbOx Mott Memristor for Artificial Neuron Applications

记忆电阻器 神经形态工程学 可扩展性 材料科学 人工神经网络 计算机科学 可靠性(半导体) 拓扑(电路) 统计物理学 电子工程 物理 电气工程 功率(物理) 人工智能 工程类 热力学 数据库
作者
Junhao Chen,Xiaojian Zheng,Jianshi Tang,Xinyi Li,Feng Xu,Bin Gao,Wen Sun,He Qian,Huaqiang Wu
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 6686-6692 被引量:17
标识
DOI:10.1109/ted.2022.3212325
摘要

Mott memristors have been considered as a promising candidate to implement artificial neurons for neuromorphic computing thanks to their low-power consumption and superior scalability. However, the large variability and poor reliability hinder their large-scale applications. The complex working mechanism associated with the thermoelectric coupling in the correlated oxides such as niobium oxide (NbOx) has led to the lack of a physics-based model to guide device optimizations. In this work, we present a microscopic model of NbOx-based Mott memristor and investigate the evolution of atomic configuration via a real-time scale kinetic Monte-Carlo simulation involving multiple physical processes. We elucidate the relationship between the ${I}{-}{V}$ characteristics and the oxygen stoichiometry. We further reveal that the low-yield issue originates from the oxidation of NbO2 phase in air and the poor reliability correlates with the migration of oxygen vacancies. We hence propose to improve the device performance by introducing a Si3N4 passivation layer and N doping. The optimized devices exhibit excellent endurance of more than 108 cycles with significantly reduced variability and low operation voltage. Both oscillation neuron and leaky integrate and fire (LIF) neuron are experimentally implemented using the optimized Mott device, which could serve as a highly reliable artificial neuron with low variability and excellent endurance for large-scale neuromorphic computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
无情的琳发布了新的文献求助10
7秒前
共享精神应助合适的哑铃采纳,获得10
11秒前
29秒前
Becky完成签到 ,获得积分10
32秒前
43秒前
54秒前
55秒前
李木禾完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
无情的琳发布了新的文献求助10
2分钟前
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
哈哈哈关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
且听风吟完成签到,获得积分10
2分钟前
2分钟前
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
3分钟前
传奇3应助JodieZhu采纳,获得30
3分钟前
3分钟前
3分钟前
合适的哑铃完成签到,获得积分10
3分钟前
3分钟前
3分钟前
Able完成签到,获得积分10
3分钟前
3分钟前
哈哈哈发布了新的文献求助10
3分钟前
3分钟前
码头整点薯条完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724051
求助须知:如何正确求助?哪些是违规求助? 5283928
关于积分的说明 15299551
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616686
邀请新用户注册赠送积分活动 1566580
关于科研通互助平台的介绍 1523420