Microscopic Modeling and Optimization of NbOx Mott Memristor for Artificial Neuron Applications

记忆电阻器 神经形态工程学 可扩展性 材料科学 人工神经网络 计算机科学 可靠性(半导体) 拓扑(电路) 统计物理学 电子工程 物理 电气工程 功率(物理) 人工智能 工程类 热力学 数据库
作者
Junhao Chen,Xiaojian Zheng,Jianshi Tang,Xinyi Li,Feng Xu,Bin Gao,Wen Sun,He Qian,Huaqiang Wu
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 6686-6692 被引量:14
标识
DOI:10.1109/ted.2022.3212325
摘要

Mott memristors have been considered as a promising candidate to implement artificial neurons for neuromorphic computing thanks to their low-power consumption and superior scalability. However, the large variability and poor reliability hinder their large-scale applications. The complex working mechanism associated with the thermoelectric coupling in the correlated oxides such as niobium oxide (NbOx) has led to the lack of a physics-based model to guide device optimizations. In this work, we present a microscopic model of NbOx-based Mott memristor and investigate the evolution of atomic configuration via a real-time scale kinetic Monte-Carlo simulation involving multiple physical processes. We elucidate the relationship between the ${I}{-}{V}$ characteristics and the oxygen stoichiometry. We further reveal that the low-yield issue originates from the oxidation of NbO2 phase in air and the poor reliability correlates with the migration of oxygen vacancies. We hence propose to improve the device performance by introducing a Si3N4 passivation layer and N doping. The optimized devices exhibit excellent endurance of more than 108 cycles with significantly reduced variability and low operation voltage. Both oscillation neuron and leaky integrate and fire (LIF) neuron are experimentally implemented using the optimized Mott device, which could serve as a highly reliable artificial neuron with low variability and excellent endurance for large-scale neuromorphic computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小潘同学发布了新的文献求助10
1秒前
杉杉完成签到,获得积分10
2秒前
3秒前
3秒前
苹果山柳发布了新的文献求助10
4秒前
4秒前
Akim应助mzf采纳,获得10
4秒前
琉璃发布了新的文献求助10
5秒前
陈倩完成签到,获得积分10
5秒前
6秒前
6秒前
上官若男应助呼啦啦采纳,获得10
6秒前
7秒前
杉杉发布了新的文献求助10
7秒前
经久发布了新的文献求助10
8秒前
慕青应助Atlantic采纳,获得10
8秒前
8秒前
JAMES发布了新的文献求助10
10秒前
笨笨金毛完成签到 ,获得积分10
10秒前
houlingwei发布了新的文献求助10
11秒前
肖一甜完成签到,获得积分10
11秒前
kirisaki发布了新的文献求助10
11秒前
852应助小蜗牛采纳,获得10
12秒前
正直香旋关注了科研通微信公众号
13秒前
李呆发布了新的文献求助10
13秒前
13秒前
万能图书馆应助杉杉采纳,获得10
13秒前
郑丽琴完成签到 ,获得积分10
14秒前
17秒前
科研通AI6应助陈大浩浩采纳,获得10
18秒前
xxxxx完成签到,获得积分10
18秒前
肖一甜发布了新的文献求助10
18秒前
苹果山柳完成签到,获得积分10
18秒前
houlingwei完成签到,获得积分10
19秒前
乐天完成签到,获得积分10
20秒前
22秒前
杨锟完成签到,获得积分10
22秒前
jin完成签到,获得积分10
23秒前
Atlantic发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4510050
求助须知:如何正确求助?哪些是违规求助? 3956506
关于积分的说明 12265122
捐赠科研通 3617199
什么是DOI,文献DOI怎么找? 1990239
邀请新用户注册赠送积分活动 1026662
科研通“疑难数据库(出版商)”最低求助积分说明 918090