Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism

赫尔格 心脏毒性 计算机科学 药物发现 指纹(计算) 计算生物学 人工智能 化学 生物信息学 医学 钾通道 生物 内科学 毒性 有机化学
作者
Tianyi Wang,Jianqiang Sun,Qi Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106464-106464 被引量:161
标识
DOI:10.1016/j.compbiomed.2022.106464
摘要

Human ether-a-go-go-related gene (hERG) channel blockade by small molecules is a big concern during drug development in the pharmaceutical industry. Failure or inhibition of hERG channel activity caused by drug molecules can lead to prolonging QT interval, which will result in serious cardiotoxicity. Thus, evaluating the hERG blocking activity of all these small molecular compounds is technically challenging, and the relevant procedures are expensive and time-consuming. In this study, we develop a novel deep learning predictive model named DMFGAM for predicting hERG blockers. In order to characterize the molecule more comprehensively, we first consider the fusion of multiple molecular fingerprint features to characterize its final molecular fingerprint features. Then, we use the multi-head attention mechanism to extract the molecular graph features. Both molecular fingerprint features and molecular graph features are fused as the final features of the compounds to make the feature expression of compounds more comprehensive. Finally, the molecules are classified into hERG blockers or hERG non-blockers through the fully connected neural network. We conduct 5-fold cross-validation experiment to evaluate the performance of DMFGAM, and verify the robustness of DMFGAM on external validation datasets. We believe DMFGAM can serve as a powerful tool to predict hERG channel blockers in the early stages of drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
央央关注了科研通微信公众号
2秒前
Doct完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
5秒前
四角水发布了新的文献求助10
6秒前
大佬发布了新的文献求助10
7秒前
小研发布了新的文献求助10
7秒前
科研通AI5应助小方采纳,获得10
8秒前
10秒前
曾经电源发布了新的文献求助10
10秒前
10秒前
英俊的铭应助Mianiu采纳,获得10
10秒前
Dannyhsu发布了新的文献求助10
10秒前
Wang完成签到,获得积分10
11秒前
12秒前
Rain发布了新的文献求助10
12秒前
结实星星完成签到,获得积分0
14秒前
14秒前
CodeCraft应助huanhuan采纳,获得10
14秒前
ssss发布了新的文献求助10
16秒前
zjkzh发布了新的文献求助10
17秒前
19秒前
19秒前
情怀应助ksduoiwex采纳,获得10
20秒前
进取拼搏发布了新的文献求助10
21秒前
22秒前
23秒前
xxx发布了新的文献求助10
23秒前
在水一方应助Rain采纳,获得10
24秒前
Dannyhsu完成签到,获得积分10
25秒前
pan发布了新的文献求助10
25秒前
陌尘发布了新的文献求助10
28秒前
28秒前
28秒前
yuyu应助大盆采纳,获得10
30秒前
Rain完成签到,获得积分10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557