Modeling Categorized Truck Arrivals at Ports: Big Data for Traffic Prediction

卡车 容器(类型理论) 计算机科学 大数据 端口(电路理论) 人工神经网络 预测建模 实时计算 卷积神经网络 到达时间 对偶(语法数字) 数据挖掘 运输工程 人工智能 工程类 机器学习 汽车工程 机械工程 电气工程 艺术 文学类
作者
Na Li,Haotian Sheng,Pingyao Wang,Yulin Jia,Zaili Yang,Zhihong Jin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 2772-2788 被引量:8
标识
DOI:10.1109/tits.2022.3219882
摘要

Accurate truck arrival prediction is complex but critical for container terminals. A deep learning model combining Gated Recurrent Unit (GRU) and Fully Connected Neural Network (FCNN), is proposed to predict daily truck arrivals using fusion technology. The model can efficiently analyze sequence and cross-section data sets. The new feature in the new model lies in that it, for the first time, incorporates the new parameters influencing traffic volumes such as the vessel-related information, arrival weekdays, and weather conditions into the long-time series of truck arrivals. Furthermore, truck arrivals are predicted in three groups based on their movement purposes: pick-up, delivery, and dual. it also contributes to the literature in a sense that the performance of the model is tested using real big data from a world-leading container port in Southern China. The results generate insightful managerial implications for guiding port traffic management in a generic manner. It reveals the relation of export container arrivals with the Container Yard (CY) closing time of a specific vessel. It is demonstrated the proposed model outperforms the currently available methods with an improved accuracy rate of prediction by 23.44% (dual), 32.09% (pick-up), and 26.99% (delivery), respectively. As a result, the model can better reflect reality compared to the existing ones in the literature. It is also evident that the 3-categorized prediction model can significantly help increase prediction accuracy in comparison with the 2-categorized methods used in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的雨完成签到,获得积分10
3秒前
Luke Gee完成签到 ,获得积分10
3秒前
3秒前
6秒前
7秒前
10秒前
leo发布了新的文献求助10
11秒前
梦华老师发布了新的文献求助10
13秒前
执着烧鹅完成签到 ,获得积分10
15秒前
春春完成签到,获得积分10
17秒前
梦华老师完成签到,获得积分10
20秒前
22秒前
爱吃猫的鱼完成签到,获得积分10
24秒前
wishe完成签到,获得积分10
27秒前
ZYN完成签到,获得积分10
33秒前
37秒前
38秒前
41秒前
leo发布了新的文献求助10
44秒前
邱寒烟aa完成签到 ,获得积分0
48秒前
鳄鱼队长完成签到,获得积分10
49秒前
123完成签到 ,获得积分10
58秒前
59秒前
天天开心完成签到 ,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
sun_lin完成签到 ,获得积分10
1分钟前
1分钟前
椒盐皮皮虾完成签到 ,获得积分10
1分钟前
jfw完成签到 ,获得积分10
1分钟前
leo发布了新的文献求助10
1分钟前
qingqingiqng完成签到,获得积分10
1分钟前
1分钟前
石子完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
可耐的寒松完成签到,获得积分10
1分钟前
科研人发布了新的文献求助10
1分钟前
逢场作戱__完成签到 ,获得积分10
1分钟前
mark33442完成签到,获得积分10
1分钟前
懵懂的仙人掌完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060642
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353